
346 Brazilian Journal of Physics, vol. 33, no. 2, June, 2003

Metafluid Dynamics as a Gauge Field Theory
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In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the metafluid dynamics,
is extended in order to reformulate the metafluid dynamics as a gauge field theory. That analogy opens up the
possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a
Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of
view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning
of the physics behind the metafluid theory. Also, the geometrical interpretation to the gauge symmetries is
discussed.

1 Introduction

The understanding of hydrodynamic turbulence is an impor-
tant problem for nature science, from both, theoretical and
experimental point of view, and has been investigated inten-
sively [1, 2, 3] over the last century, but a deep and fully
comprehension of the problem remains obscure.

Over the last years, the investigation of turbulent hy-
drodynamics has experienced a revival since turbulence has
became a very fruitful research field for theoreticians, that
study the analogies between turbulence and field theory, crit-
ical phenomena and condensed matter physics [4, 5, 6, 7, 8,
9, 10, 11, 12], renewing the optimism to solve the turbulence
problem.

The dynamics of turbulent viscous fluid is expressed by
the Navier-Stokes (NS) equations of motion[1], which in
vectorial form are given by

∂~u
∂t

= −~u.∇~u− 1
ρ
∇p + ν∇2~u (1)

or
∂~u
∂t

= −~w × ~u−∇
(

p

ρ
+

u2

2

)
+ ν∇2~u, (2)

where~u(~x, t) is the velocity field,~w(~x, t) the vorticity
field, p(~x, t) is the pressure,ρ the density andν the kine-
matic viscosity.

The equation of continuity reduces to the requirement
that the velocity field is divergenceless for incompressible
fluids, i.e,

∇.~u = 0, (3)

which are the flows we are interested in this paper. In this
context, the hydrodynamic turbulence has attracted an enor-
mous interest due to the universal characteristics stressed by
an incompressible fluid with high Reynolds numbers in the
fully developed turbulent regime. The Reynolds number,

R ≡ LU/ν (whereL is the integral length-scale of the
largest eddies andU is a characteristic large-scale velocity),
measures the competition between convective and diffusive
processes in an incompressible fluid described by the NS
equations. The term~u.∇~u is of the order of magnitude of
U2/L and the quantityν∇2~u is of the order of magnitude of
νU/L2. So, the ratio of the two is just the Reynolds num-
ber. Hence the term~u.∇~u may be neglected if the Reynolds
number is small, and the NS equations become the diffusion
equation,∂~u

∂t = ν∇2~u, where the viscosityν plays the role
of the diffusion coefficient. So, as we are interested in treat-
ing the turbulence flow, we must consider high Reynolds
number. In view of this, the incompressible fluid flow as-
sumes high Reynolds numbers when the velocity increases
and, consequently, the solution for eqn.(2) becomes unsta-
ble and the fluid switches to a new regime of a very com-
plex motion with the velocity varying almost randomly and
without any noticeable order. To discover the laws describ-
ing what exactly is going on with the fluid in this turbulent
regime is very important to both theoretical and applied sci-
ence.

Recently, Marmanis[13] has proposed an alternative ap-
proach to treat fluid turbulence. Based on the analogy be-
tween Maxwell electromagnetism and turbulent hydrody-
namics, he describes the dynamical behavior of average flow
quantities in incompressible fluid flows with high Reynolds
numbers exactly as is done to obtain the macroscopic elec-
tromagnectic fields [14]. This average is obtained applying
the spatial filtering method proposed by Russakoff[14, 15].
In this method, the spatial average of a functionA(~x, t) with
respect to a test functionf(~x) will be defined in terms of a
convolutional integral given by

〈A(~x, t)〉 =
∫

f(~x′)A(~x− ~x′, t)d3x′, (4)
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wheref(~x) is real, positive definite in some neighborhood
of ~x = ~0, and normalized to unity over all space. Moreover,
in order to preserve directional characteristics, we can con-
sider the class of functionsf(~x) that are isotropic in space.

In this theory, metafluid dynamics, the vorticity(~w =
∇ × ~u) and Lamb vector(~l = ~w × ~u) are recognized as
the kernel of this dynamical theory of turbulence. In our pa-
per, we make a further investigation of the physical contents
present in that theory, in order to furnish a better understand-
ing of turbulence.

To extract the physical meaning of the metafluid dynam-
ics, we extend the Marmanis analogy in order to propose
an appropriate Lagrangian governing the dynamics of in-
compressible fluid flows. From this Lagrangian and using
the symplectic method[16], the physics behind the metafluid
theory is discussed.

In order to make this work self-consistent, we have or-
ganized this paper as follows. In Section 2, a brief review
of the metafluid dynamics is presented as well as the perti-
nent physical quantities and notation. In Section 3, the La-
grangian approach for the metafluid dynamics is proposed
and some considerations about the dissipation rate of en-
ergy is discussed. In Section 4, the new description for the
metafluid dynamics is studied using the symplectic method,
which leads to unveil the gauge symmetry. Further, we scru-
tinize the symmetry of the model and show that the gauge
invariance is only preserved in some limits, calledinertial
range, and also we identify the physical quantities that are
gauge invariant into this region. In Section 5, the geometric
interpretation of the gauge symmetry is given and discussed.
In Section 6, we stress our conclusion and final discussions.
We added an appendix with a brief review of the simplectic
formalism.

2 Metafluid dynamics

The problem of turbulence is to find the averaged proper-
ties from the solutions of NS equations under the constraint
of the incompressibility condition, eqn.(3), forming a sys-
tem of coupled nonlinear partial differential equations. Due
to this, it is a difficult task to get a common feature of av-
eraged nonlinear equations, because nonlinearity introduces
higher order momenta of fluctuation, what is known as clo-
sure problem. To overcome this problem, Marmanis[13]
proposed an approximate theory of turbulence based on the
analogy between Maxwell electromagnetism and turbulent
hydrodynamics, where the equations governing the dynamic
variables become linear and the nonlinearities appear as
sources of turbulent motion. In this picture, one constructs a
system of equations written in terms of the average values of
the vorticity(~w) and Lamb vector(~l), instead of the average
values of~u andp. Essentially, it turns the turbulence clo-
sure problem into a study of turbulent sources for different
geometries of interest.

In this scenario, the study of average quantities of an

incompressible fluid at the fully developed regime is pro-
posed, leading to a system where the average fields show up
in a continuum inter-relation and respond as waves to the
turbulent sources. To do so, the Lamb vector and the vor-
ticity should be taken as the kernel of the turbulent dynam-
ics rather through velocity and vorticity fields or velocity
and pressure fields. Then whatever parts that cannot be ex-
plicitly expressed as a function of~w or~l only, are gathered
and treated as source terms. This is done by introducing the
concepts ofturbulent charge(n) andturbulent current(~j).
The turbulent charge is connected with the Bernoulli energy
function,

Φ(~x, t) =
p

ρ
+

u2

2
, (5)

through the relation

n(~x, t) = −∇2Φ. (6)

In this formalism, the equations of motion describing the
behavior of the hydrodynamic turbulence are

∇.~w = 0,
∂~w
∂t = −∇×~l + ν∇2~w,

∇.~l = n(~x, t),
∂~l
∂t = u2∇× ~w −~j(~x, t) + ν∇n(~x, t)− ν∇2~l,

(7)

where the turbulent current(~j) is given by

~j(~x, t) = ~un+∇×(~u.~w)~u+ ~w×∇(Φ+~u2)+2(~l.∇)~u. (8)

After the average process1 are written as

∇. ~w = 0,
∂ ~w
∂t = −∇×~l + ν∇2 ~w,

∇.~l = n(~x, t),
∂~l
∂t = c2∇× ~w − ~J(~x, t) + ν∇n(~x, t)− ν∇2~l,

(9)

where c2 = 〈u2〉 is the spatial averaged squared veloc-
ity, ~w and~l are defined as the averages of~l and ~w, while
the sources~J andn are averages of~j andn, respectively.
As showed by Marmanis[13], takingc2 = 〈u2〉 does not
change significantly the pattern of velocity fields one get
using eqn.(7) or eqn.(9). From now on, we refer to the
above equations for averaged quantities as metafluid dynam-
ics equations of motion.

Now, with the purpose to implement the analogy be-
tween the set of eqn.(9) with the Maxwell equations with
sources in vacuum[14], note that these set of equations are
identical if ~B (magnetic field) corresponds to~w and~E (elec-
tric field) corresponds to~l. Furthermore, the analogy can be
extended in order to include the potentials as well. In partic-
ular, the comparison suggests that the vector potential corre-
sponds to the velocity field~u and the scalar potential to the
Bernoulli energy functionφ.

1This point is well discussed in Ref.[13].
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Despite of all resemblance between hydrodynamic tur-
bulence and electromagnetic theory, there is a conceptual
difference in the identification of the physical entities. In the
classical electromagnetism, the physical fields are the elec-
tric and magnetic fields while the potentials are just mathe-
matical artifices. Oppositely, in the metafluid dynamics, the
potentials are the entities which have physical significance.

3 Lagrangian approach

From the geometric point of view and using the Lie algebra,
Arnold [17] showed that Euler flow can be described in the
Hamiltonian formalism in any dimension. This has a lot of
interesting consequences for fluid mechanics and has been
studied intensively[18, 19]. However, it is not quite obvious
that this process can be used when viscosity is taken in ac-
count. It is in this scenario where the metafluid dynamics
births, revealing a way to find a Hamiltonian formalism for
a turbulent flow with viscosity.

In the classical electromagnetism, the Lagrangian den-
sity can be written as the difference between the square of
the electric and magnetic fields, as follows,

L =
1
2
( ~E2 − ~B2). (10)

Using the analogy established between electromagnetism
and turbulence, one can write down the Lagrangian density
for the theory of turbulence as

L =
1
2
(~l 2 − c2 ~w2), (11)

where we define the averaged Lamb vector~l, as

~l = −∂~u

∂t
−∇φ + ν∇2~u, (12)

with ~u = 〈~u〉 andφ = 〈Φ〉.
So, we can also write the above Lagrangian density in

terms of velocity field and the Bernoulli energy function,
named “potentials of theory”, as

L =
1
2

(
−∇φ− ∂~u

∂t
+ ν∇2~u

)2

− 1
2
c2(∇× ~u)2. (13)

It is easy to see that this Lagrangian density gives us the
equations of motion (9) for the homogeneous case (no
sources).

Applying Euler-Lagrange equations forφ and~u, respec-
tively, one gets

∇.(−∇φ− ~̇u + ν∇~u) = 0, (14)

using eqn.(12), one can see that eqn.(14) can be written as

∇.~l = 0. (15)

For~u, we get

c
∂

∂t
(−∇φ− ~̇u + ν∇2~u) = c2(∇×∇× ~u)− ν∇2(−∇φ− ~̇u + ν∇2~u). (16)

d

Again, because of eqn.(12) and using~ω = ∇ × ~u, the
above equation can be written as

∂~l

∂t
= c2∇× ~ω − ν∇2~l. (17)

Those equations of motion we got from the Lagrangian
density (13) are the two last equations for the metafluid dy-
namics with no turbulent sources. The other two equations
are obtained directly from~ω and~l definitions. Taking the

divergence of~ω, we get the first of eqn.(9) and to get the
second one, take the curl of eqn.(12).

Now, let us consider the case when sources do not van-
ish. In this case, the sources appear in the equations of mo-
tion and, as a consequence, an interaction Lagrangian, de-
fined as

Lint = ~J.~u− nφ− ν~u.∇n, (18)

which contains a viscous correction term, is added to the
Lagrangian (13), providing the total Lagrangian density,

c

L =
1
2

(
−∇φ− ∂~u

∂t
+ ν∇2~u

)2

− 1
2
c2(∇× ~u)2 + ~J.~u− nφ− ν~u.∇n. (19)

d

There is no doubt that the metafluid dynamics can produce
some interesting results. Hence, let us show that the equa-
tions of motion for viscous fluid, given in eqn.(9), can be
found from the Euler-Lagrange equations, where the veloc-
ity field (~u) and the Bernoulli energy function(φ) are the

canonical variables. From the Lagrangian density, eqn.(19),
NS equations (2) are obtained in order to demonstrate that
the physical contents of turbulence in the NS equations de-
scription are also present in our construction. This is rea-
sonable, once in the process of averaging, actually, the test
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function used is supposed to cancel just the short distance
fluctuations of velocity fields, so all the physical contents
due to the random characteristic of turbulent flow observed
in the fully developed turbulence, where the scale invariance
is expected to exist, should not depend on short distance
interactions. The conjugated momenta of velocity field is
computed as

~π(~x, t) =
δL

δ~̇u(~x, t)
=

∂~u

∂t
+∇φ−ν∇2~u = −~l(~x, t), (20)

and using (12), we get the NS equations, namely,

∂

∂t
~u(~x, t) = −~l(~x, t)−∇φ(~x, t) + ν∇2~u(~x, t), (21)

where~l(~x, t) = ~w × ~u.
One of the simplest consequences of the NS equations

(2), modified by the addition of the external force~f , may be
obtained by taking its scalar product with~u and integrating
the result over the space coordinate. The result is the relation

d
dt

∫
1
2
u2 = −ν

2

∫
(∇~u)2 +

∫
~f.~u, (22)

which expresses the energy balance: the time derivative of
energy on the right hand side is equal to the difference of
the injection rate

∫
~f.~u and the dissipation of energy rate

ν
2

∫
(∇~u)2. Taking averages in the stationary state, we ob-

tain
〈~u. ~f〉 = 〈ν

2
(∇~u)2〉 ≡ ε, (23)

that is the equality of the (intensive) mean injection and the
mean dissipation rates of energy. The energy injection takes
place at the distances of order of the integral scale by in-
duction of big scaleL eddies. According to the picture of

the turbulent flow proposed in 1922 by Richardson [20], the
big eddies induce still smaller eddies and so on transferring
energy from large to small distance scales. This process
should not lead to a loss of energy until sufficiently small
distance scales, say, smaller thanη (dissipative scales of
Kolmogorov[3]), are reached. On scales smaller thanη, the
dissipative termν∇2~u of the NS equation becomes impor-
tant.

4 Symplectic analysis

In the last sections, the analogy between turbulent hydro-
dynamics and Maxwell electromagnetism was explored and
a gauge field theory to describe the turbulent fluid, called
metafluid theory, was proposed, suggesting that this the-
ory can be analyzed as a constrained system. Both systems
are characterized in phase space by the presence of some
functions that depend on the coordinates and canonical mo-
menta, denominated constraints, which restrain the dynam-
ics of the model. There are some methods to handle con-
strained systems, however we analyze the metafluid theory
(ν 6= 0) from the symplectic point of view[16]. In the ap-
pendix we present the symplectic formalism for complete-
ness.

To implement the symplectic formalism, the Lagrangian
density (19) will be rewritten in its first-order form, given
by,

L(0) = ~π.~̇u− U (0), (24)

where the canonical momenta and the zeroth-iterative sym-
plectic potential(U (0)) are

c
~π = ∇φ + ~̇u− ν∇2~u,

U (0) = 1
2~π2 − ~π.∇φ− 1

2c2(∇× ~u)2 + ν~π.∇2~u− ~u. ~J + φn + ν~u.∇n,
(25)

d

respectively.
From the set of symplectic variablesξ

(0)
i = (ui, πi, φ)

and their respective one-form canonical momenta,

a(0)
ui

= πi,

a(0)
πi

= 0, (26)

a
(0)
φ = 0,

the symplectic matrix is computed as

f (0) =




0 −δij 0
δij 0 0
0 0 0


 δ(~x− ~y), (27)

which is singular, so, has a zero-modeṽ(0) = (vφ, 0, 0).
Contracting this zero-mode with the gradient of symplectic
potentialU (0), the following constraint appears,

Ω1 = ∇.~π(~x) + n(~x). (28)

In agreement with the symplectic formalism, this constraint
is introduced into the Lagrangian through a Lagrange multi-
plier λ, namely,

L(1) = ~π.~̇u + λ̇Ω1 − U (1) (29)

where the symplectic potential density is

U (1) = U (0) |Ω1=0

=
1
2
~π2 − 1

2
c2(∇× ~u)2 + ν~π.∇2~u− ~u. ~J + ν~u.∇n.

(30)

Considering now that the new set of symplectic variables
is given in the following order,ξ(1)

i = (ui, πi, λ), we have
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the one-form canonical momenta as,

a(1)
ui

= πi,

a(1)
πi

= 0, (31)

a
(1)
λ = ∇.~π + n.

The symplectic matrixf (1) is

f (1) =




0 −δij 0
δij 0 ∂x

j

0 −∂y
i 0


 δ(~x− ~y), (32)

that is a singular matrix with a zero-mode given by,

ṽ(1) = (v~u
j , 0, vλ), (33)

satisfying the following relation,

v~u
i − ∂iv

λ = 0. (34)

Contracting the zero-mode(ṽ(1)) with the gradient of
the symplectic potential(U (1)), we get a new constraint,

c

Ω2 =
∫

d3~x v~u
i

δ

δui(~x, t)

∫
d3~y{−1

2
c2(∇× ~u)2 + ν~π.∇2~u + ν~u.∇n− ~u. ~J}

=
∫

d3~x v~u
i (~x)Ji(~x). (35)

Using (34),Ω2 becomes

Ω2 =
∫

d3~x vλ(~x)∂iJi(~x) = −
∫

d3~x vλ(~x)
∂

∂t
∇2φ(~x). (36)

d

Note that the sympletic analysis opens up the possibility to
investigate the metafluid dynamics in and out of the inertial
range. In this paper, we analyse the physical contents behind
the metafluid dynamics at the inertial range. The dynamics
of metafluid theory out of inertial range will be investigated
in a future work. It is important to regard that at the iner-
tial range, despite of the existence of viscosity, there is no
energy dissipation, then, the Bernoulli energy function(φ)
is constant. Due to this,Ω2 vanishes and, consequently, the
hidden gauge symmetry of the metafluid theory is revealed.

To finish the symmetry analysis, it is necessary to ob-
tain the infinitesimal gauge transformation. In the symplec-
tic context, the gauge transformations are generated by the
zero-mode that does not produce a new constraint. In the
present case, the zero-modeṽ(1), given by eqn.(33), does
not generate a new constraint, consequently, it is the gener-
ator of the following infinitesimal gauge transformations,

δui = ∂iε,

δπi = 0, (37)

δφ = −ε̇,

whereφ → λ̇ andε is an infinitesimal time-dependent pa-
rameter. It is easy to verify that the Lagrangian (19) is in-
variant under these transformations,

δL = −(∂iπi + n)ε̇ + (−ṅ + ṅ)ε + (∂iπi + n)ν∂2ε

= 0. (38)

However, for the Hamiltonian below,

H =
1
2
~π2 − ~π.∇φ− 1

2
c2(∇× ~u)2

+ν~π.∇2~u− ~u. ~J + φn + ν~u.∇n, (39)

we get

δH = ε∂iJi = −ε∇2 ∂

∂t
φ. (40)

We can observe that the gauge invariance is only preserved
at the inertial range, where the Bernoulli energy function is
constant.

In order to obtain the Dirac brackets among the phase
space fields, we have to fix the gauge symmetry. It is done
introducing a gauge condiction into the kinetical sector of
first-order Lagrangian through a Lagrange multiplier. So,
we choose a gauge fixing term that satisfies the condition of
incompressibility of fluid, namely,

χ = ∇.~u. (41)

In view of this, the twice iterated Lagrangian is obtained as

L(2) = ~π.~̇u + λ̇Ω1 + η̇χ− U (2), (42)

where the symplectic potential density is

U (2) = U (1) |χ=0=
1
2
~π2+c2~u.∇2~u+ν~π.∇2~u−~u. ~J. (43)

Considering now that the new set of symplectic variables is
given in the following orderξ(2)

i = (ui, πi, λ, η), we have

a
(2)
ui = πi,

a
(2)
πi = 0,

a
(2)
λ = ∇.~π + n,

a
(2)
η = ∇.~u.

(44)
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Then, the corresponding symplectic matrix is obtained as

f (2) =




0 −δij 0 −∂x
i

δij 0 −∂x
i 0

0 −∂x
j 0 0

−∂x
j 0 0 0


 δ(~x− ~y). (45)

This matrix is nonsingular and, consequently, the corre-
sponding inverse matrix can be determined after a straight-
forward calculation. From the inverse off (2) , the nonvan-
ishing Dirac brackets among the phase space fields is auto-
matically identified, namely,

{ui(~x), πj(~y)}∗ =
(

δij −
∂x

i ∂x
j

∇2

)
δ(~x− ~y). (46)

The next step would be the quantization of this con-
strained theory. Using the well known canonical quantiza-

tion rule({ , }∗ → −i[ , ]), we have,

[ui(~x), uj(~y)] = [πi(~x), πj(~y)] = 0,

[ui(~x), πj(~y)] = −i
(
δij − ∂x

i ∂x
j

∇2

)
δ(~x− ~y). (47)

Once we have the canonical quantization rule, we can
apply standard Quantum Field Theory techniques to find
the generating functional and, consequently, the correlation
functions and all physical quantities [21, 22] one wish. De-
spite given an prescription to quantize the metafluid dynam-
ics, we will not discuss further this question. This subject is
one of our present research.

In order to show the consistence of our formalism, let
us obtain the equations of the Metafluid Dynamics from the
Hamilton’s equations. Using the Dirac brackets given above
and the Hamiltonian given in (39), we have

c

∂~u(~x)
∂t

=
∫

d3~y{~u(~x),H(~y)}∗

= ~π(~x)− ∇(∇.~π(~x))
∇2

−∇φ(~x) +
∇(∇2φ(~x))

∇2
+ ν∇2~u(~x)− ν∇(∇.~u(~x)), (48)

and

∂~π(~x)
∂t

=
∫

d3~y{~π(~x),H(~y)}∗

= −ν∇2~π(~x) + ν∇(∇~π(~x)) + ~J(~x)

+ c2(∇2~u(~x)−∇(∇.~u(~x)))− ∇(∇. ~J(~x))
∇2

. (49)

Since the velocity field is divergenceless for incompressible fluids and∇.~π = −n = ∇2φ, from the first equation in (48)we
get

~π(~x, t) =
∂~u

∂t
+∇φ− ν∇2~u = −~l(~x, t), (50)

which is the same result obtained in (20). Using (50),∇. ~J = −∇2φ̇ = 0 and (49), we have

∂~l(~x)
∂t

= c2∇×∇× ~u(~x)− ~J(~x, t) + ν∇n(~x, t)− ν∇2~l(~x), (51)

d

which is the fourth equation in (9). The first equation and
the second equation in (9) are obtained taking the curl of
(3) and (50), respectively. The third is obtained taking the
divergence of (51).

5 Geometrical aspects of the gauge
formalism

In this section, we give a geometrical interpretation to the
gauge symmetry present on the metafluid theory (gauge field
theory). The description of fundamental particle interaction,
with the assistance of the gauge field theory, introduces ex-

tra degrees of freedom into the theory, that manifests itself
in the singular nature of the respective Lagrangian or the
presence of first class constraint in the equivalent Hamil-
tonian formulation. In this case, the phase space is larger
than the physical one, which is a hypersurface determined
by the constraints of the theory. In this gauge invariant sce-
nario, the gauge potentials form an overcomplete basis and
the gauge fields, which can be connected by an infinitesi-
mal transformation, describe the same physical state. Thus,
the gauge potentials are separated into equivalence classes
with respect to the gauge group action, where each one de-
notes an orbit in the gauge field configuration. Transitions
along(vertical) the orbits correspond to pure gauge transfor-
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mations, consequently, these paths have no physical signif-
icance. Oppositely, perpendicular(horizontal) paths to the
orbits describe the time evolution of the physical system,
then, they are physically important to the theory. Hence,
to find out the equations of motion for the physical fields
consist in solving the problem of constructing the horizontal
paths, which is computed just doing a correct definition of
the metric in the orbit space. To do so, we follow process
developed in [23], where the authors demonstrated that the
physical (orbit) space is equipped with a natural projective
metric.

In view of this, our task is to get a singular Lagrangian,
dynamically equivalent to (19), to govern the metafluid the-
ory. It is achieved eliminating the Bernoulli energy function
(φ) from the Lagrangian (19). It can be done since this field
has no dynamics, as demonstrated in the last section. To
eliminate this field from (19), we use the Euler-Lagrange
equation of motion forφ, given by,

φ(~x) = −∂iu̇i + n

∂2
+ ν∂iui. (52)

Bringing back this result into the Lagrangian (19) and
rewriting it in terms of field components, we get

L =
1
2
u̇iMij u̇j + (∂iu̇i)

n

∂2
+

1
2

n2

∂2
− ν(∂2u̇i)Mijuj

+
ν2

2
(∂4ui)Mijuj +

1
2
c2(∂2ui)Mijuj + uiJi, (53)

where the metric of configuration spaceMij , reads as

Mij = δij − ∂i∂j

∂2
, (54)

being a singular matrix which has∂i as eigenvectors with
zero eigenvalues,

∂iMij = 0. (55)

As the gauge orbits lay down by the eigenvectors, are
vertical to the physical hypersurface defined by the projec-
tive metricMij(M2 = M), the infinitesimal gauge trans-
formation for the velocity potential can be computed as

δui = ∂iε, (56)

which was also obtained in symplectic context.
At this stage, we would like to make some comments

about the geometry associated to the gauge symmetry. From
the Lagrangian (53), we identify a singular projective met-
ric which defines a physical surface (orbit space) of the
metafluid theory. Since this metric does not depend on the
phase space fields, the curvature tensor is null, therefore, the
orbit space is flat.

Now, we investigate the metafluid theory described by
the Lagrangian (53) using the projector method[24]. From
eqn.(53), the canonically conjugated momenta to the fieldui

are computed as

πi = Mij u̇j − ∂in

∂2
− νMij∂

2uj . (57)

Contracting these canonical momenta with the eigenvec-
tors∂i, the primary constraint is determined as

χ ≡ ∂iπi + n (58)

which agrees with the results obtained in the symplectic
analysis.

From the Lagrangian (53), the Euler-Lagrange vector is
obtained as

Ek = Mkj üj − c2Mkj∂
2uj − Jk − ∂kṅ

∂2
− ν2Mkj∂

4uj .

(59)
Using the projector method[24], the equations of motion

that satisfy the constraints are projected by the singular met-
ric, namely,

MikEk = 0, (60)

and, then, we get the wave equation for the velocity[13],
given by,

Mij üj − c2Mij∂
2uj −MijJj − ν2Mij∂

4uj = 0,

ü⊥i − c2∂2u⊥i − J⊥i − ν2∂4u⊥i = 0, (61)

where the velocity and current were redefined asu⊥i =
Mijuj andJ⊥i = MijJj , respectively, and⊥ denotes the
transverse fields (gauge invariant fields). This set of equa-
tions together with the constraint condition, eqn.(58), de-
fine the metafluid dynamics with transverse fields. Due to
this, the incompressibility condition is satisfied automati-
cally, namely,

∂iui
⊥ = ∂iMijuj

∂iui
⊥ = 0. (62)

Contracting the eigenvector∂i with the Euler-Lagrange
vector,

∂kEk = ∂k(Mkj üj)− c2∂k(Mkj∂
2uj)

−∂kJk − ∂k
∂kṅ

∂2
− ν2∂k(Mkj∂

4uj), (63)

we get the continuity equation, given by,

∂kEk = ṅ + ∂kJk = 0. (64)

As n = −∇2φ, we obtain

−∇2φ̇ + ∂kJk = 0. (65)

As our aim is to investigate the physical meaning of the
metafluid dynamics at the inertial range where(φ̇ = 0), we
get

∂kJk = 0. (66)

Therefore, the current satisfies the divergenceless condition.
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6 Conclusion

In this paper, we proposed to investigate incompressible tur-
bulent hydrodynamics in the context of metafluid dynamics
in order to open up the possibility to apply all the machin-
ery very well known in quantum field theory. This inves-
tigation was possible due to the analogy of incompressible
turbulent hydrodynamics with Maxwell electromagnetism.
Exploiting this analogy, the Dirac brackets were computed
through the symplectic formalism, which revealed a hidden
symmetry presents on the metafluid gauge theory, only pre-
served in inertial range. Afterward, the geometrical mean-
ing of the gauge symmetry was given, showing that the or-
bit space is flat and, consequently, the divergenceless condi-
tion (∇. ~J = 0) is naturally obtained, at least in the inertial
range. Subsequently, the wave equations for the transverse
(horizontal) velocity field were computed, which was also
obtained in [13], but written in terms of the velocity field,
both horizontal (gauge invariant) and vertical (gauge vari-
ant) components.
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A Symplectic formalism

Faddeev and Jackiw [25] and Barcelos and Wotzasek [26]
showed how to implement the constraints directly into the
canonical part of the first-order Lagrangian once this method
is applied to first order Lagrangians. In order to system-
atize the symplectic gauge formalism, a general noninvari-
ant mechanical model that has its dynamics governed by
a LagrangianL(ai, ȧi, t) (with i = 1, 2, ..., N ) is consid-
ered, whereai andȧi are the space and velocities variables
respectively. Notice that this consideration does not lead
to lost of generality. In the symplectic method, the first-
order Lagrangian written in terms of the sympletic variables
ξ
(0)
α (ai, pi) (with α = 1, 2, ..., 2N ), is required

L(0) = A(0)
α ξ̇(0)

α − U (0), (67)

whereA
(0)
α is the one-form canonical momenta,(0) indi-

cates that it is the zeroth-iterative Lagrangian and,U (0), the
sympletic potencial. This Lagrangian one-form gives rise to
the Euler-Lagrange equations

f
(0)
αβ ξ̇(0)

α =
∂U (0)

∂ξ
(0)
β

, (68)

where

f
(0)
αβ =

∂A
(0)
β

∂ξ
(0)
α

− ∂A
(0)
α

∂ξ
(0)
β

, (69)

and whose solutions depend on the invertibility off
(0)
αβ . Of

course, this is impossible if there are (true) constraints in-
volved. Since they would make this matrix singular. If
(f (0)

αβ )−1 exists, then we can write

ξ̇(0)
α = (f (0)

αβ )−1 ∂U (0)

∂ξ
(0)
β

. (70)

After that, the sympletic tensor, eqn.(69), is computed.
Since this sympletic matrix is singular, it has a zero-mode
(ν(0)) that generates a new constraint when contracted with
the gradient of potencial, namely,

Ω(0) = ν(0)
α

∂U (0)

∂ξ
(0)
α

. (71)

Through a Lagrange multiplierλ, this constraint is intro-
duced into the zeroth-iterative Lagrangian (67), generating
the next one

L(1) = A(0)
α ξ̇(0)

α − U (0) + λ̇Ω(0),

= A(1)
α ξ̇(1)

α − U (1) (72)

where

U (1) = U (0)|Ω(0)=0,

ξ(1)
α = (ξ(0)

α , λ), (73)

A(1)
α = A(0)

α + λ
∂Ω(0)

∂ξ(0)
.

The first-iterative sympletic tensor is computed as

f
(1)
αβ =

∂A
(1)
β

∂ξ
(1)
α

− ∂A
(1)
α

∂ξ
(1)
β

. (74)

Since this tensor is nonsingular, the iterative process stops
and the Diras brackets among the phase-space variables are
obtained from the inverse matrix. On the other hand, if the
tensor is singular, a new constraint arises and the iterative
process goes on.
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