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Solution of Hyperbolic Bioheat 
Transfer Problems by Numerical 
Green’s Functions: The ExGA-Linear 
θθθθ Method 
This paper presents a time-domain formulation called Explicit Green’s approach (ExGA) 
linear � method for the solution of the bioheat equation. Starting from the hyperbolic 
bioheat equation, which includes the parabolic one as a special case, the linear   method is 
incorporated into the standard ExGA time marching scheme. The numerical Green’s 
function is firstly computed in the Laplace transform domain and then back-transformed to 
the time domain through the Stehfest inversion algorithm. The proposed formulation has 
the properties of stabilizing the results and suppressing numerical oscillations that appear 
in the presence of discontinuous solutions as assessed through the analysis of some 
bioheat transfer problems. 
Keywords: numerical Green’s function, bioheat, ExGA, time-marching scheme, 
Laplace transform  
 
 
 
 
 

 
 
 

Introduction 1 

Numerical methods have been widely used as a powerful tool 
for the solution of many problems in the thermo-biology field. There 
are several different mathematical models that can be used to 
describe the bioheat transfer process in living tissue (Rubinsky, 
2006; Khanafer and Vafai, 2009). Among these, the Pennes’ bioheat 
equation is frequently adopted in applications such as cancer 
hyperthermia therapies, cryosurgery, laser surgery, thermal 
diagnostics, skin burns and thermal comfort analysis. The literature 
reports a great deal of works on the numerical modelling of the 
parabolic Pennes equation considering different numerical 
techniques (Chan, 1992; Torvi and Dale, 1994; Liu and Xu, 2000; 
Dai, Yu and Nassar, 2004; Rubinsky, 2006; Presgrave, Guedes and 
Scofano Neto, 2009), e.g., finite difference, finite element and 
boundary element methods, each of them with its own advantages 
and disadvantages depending on the problem under consideration. 
However, there are some applications of extremely short time 
duration or at very low temperature (e.g., cryogenic surgery, laser-
induced thermal damage, etc.) for which the parabolic Pennes 
bioheat equation, which assumes an infinite thermal speed of 
propagation according to Fourier’s law, is not adequate and the 
mathematical model may be more accurately described by the 
hyperbolic bioheat equation (Lu, Liu and Zeng, 1998; Liu, Chen and 
Xu, 1999; Tunga, 2009; Özen, Helhel and Çerezci, 2008; Liu, 2008; 
Xu, Seffen and Lu, 2008; Zhou, Zhang and Chen, 2009). The 
hyperbolic bioheat equation is characterised by the finite thermal 
speed of propagation of the thermal waves due to the application of 
a modified Fourier’s law (Cattaneo, 1958).  

Green’s functions are an important tool in solving partial 
differential equations since the solution of a problem subjected to 
any kind of initial conditions, boundary conditions and internal heat 
generation can be obtained through integral equations once the 
Green’s function is known. Both analytical and numerical 
techniques for the solution of heat conduction problems based upon 
Green’s functions are well-documented (Beck, 1992; Wu and Chu, 
1999; Wrobel, 2002). However, the solution of bioheat problems 
using Green’s functions is not widely popular (Newman, Lele and 
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Bowman, 1990; Chan, 1992; Gao B., Langer and Corry, 1995; Deng 
and Liu, 2002; Li, Liu and Yue, 2009), with few published papers 
which concentrate mainly on the parabolic Pennes equation. It is 
well known that one of the major drawbacks in the solution of 
partial differential equations by Green’s function-based techniques 
is the lack of analytical Green’s functions for complicated 
geometries and/or variable material properties. To circumvent these 
disadvantages, a formulation named Explicit Green’s Approach 
(ExGA) was proposed in Mansur et al. (2007) and Loureiro (2007). 
The technique is based on the use of numerical Green’s functions 
instead of analytical ones, and combine concepts from both finite 
element method (FEM) (Hughes, 1987) and time-domain boundary 
element method (BEM) (Mansur, 1983; Wrobel, 2002), as 
demonstrated by Loureiro, Mansur and Vasconcellos (2009) and 
Loureiro and Mansur (2010). Hence, the flexibility offered by the 
ExGA method makes it very general and applicable to many classes 
of problems.  

The main aim of this paper is to present a novel time-domain 
formulation for the solution of the hyperbolic bioheat equation. The 
proposed time-domain formulation combines the ExGA 
methodology (Loureiro et al., 2010) with the linear � method 
presented in Yu et al. (1998) in a BEM context, giving rise to a new 
formulation denominated ExGA-linear � method. Following the 
works of Loureiro, Mansur and Vasconcellos (2009) and Loureiro 
and Mansur (2009a), a Laplace transform technique in conjunction 
with the FEM is applied to the Green’s function equation; 
subsequently, the Gaver-Stehfest Laplace inversion algorithm 
(Stehfest, 1970) is employed to compute the Green’s function in the 
time-domain. Since Green’s functions are firstly formulated taking 
into account the Laplace transform and then incorporated into the 
ExGA-linear � time-marching scheme, a hybrid time-Laplace 
technique is derived, resulting in the ExGA-Stehfest linear � 
method. The ExGA-linear � method is suited not only to stabilize 
the numerical results but also to suppress numerical (spurious) 
oscillations that may appear near discontinuous solutions in the 
hyperbolic model. Besides, its computer implementation is very 
straightforward. The applicability, potentialities and accuracy of the 
technique are demonstrated by considering some numerical 
examples with discontinuous solutions in the hyperbolic model. 



Loureiro et al. 

460 / Vol. XXXIV, No. 4, October-December 2012   ABCM  

Nomenclature 

C = specific heat of tissue, 1 0 1. .J g C− −  

bc  = specific heat of blood, 1 0 1. .J g C− −  

 ( )tG  = Green’s matrix  

 ( )j sg   = Green’s vector in the Laplace domain 

 k          = thermal conductivity of tissue, 1 0 1. .W mm C− −  

 ( )N x  = interpolation function 

 rQ        = spatial heating, 3.W mm−  

 mQ  = metabolic heat of tissue, 3.W mm−  

 ( ),q tx   = prescribed boundary heat flux, 2.W mm−  

 ( ),T tx  = tissue temperature, °C 

 ( )0T x   = initial temperature, °C 

 ( ),T tx  = prescribed boundary temperature, °C 

 ( ),bT tx  = blood temperature, °C 

 ( )tT   = temperature vector  

 ( )tT&    = time derivative of the temperature vector 

 ( )p tT  = particular solution vector 

 hV       = finite element space 

 bw       = perfusion rate of blood, 3 1. .g mm s− −  

 hW    = weighting function 

Greek Symbols 

 kjδ  = Kronecker delta 

 ( )δ ⋅  = dirac delta function 

 t∆  = time step size, S 

 ρ  = density of tissue, 3.g mm−  

 θ  = linear θ  method parameter  
 rτ  = thermal relaxation time, s  

 iλ  = eigenvalue 

 Γ  = Lipschitz boundary  
 Ω  = open bounded domain 

Mathematical Equations 

Let Ω ⊂  ℝ� be an open bounded domain with Lipschitz 
boundary Γ = ∂Ω , where d  is the number of spatial dimensions, 

and let (0, fI t =   be the total time interval of the analysis, with 

0ft > . The governing equation for hyperbolic bioheat transfer 

problems reads (Liu, Chen and Xu, 1999): 
 

( )( ) ( ) ( )( ) ( )
( ) ( ) ( )

, , , ,

, ,

b b b

r r b b

k T t w c T t T t b t

cT t c w c T tτ ρ ρ τ

∇ ⋅ ∇ + − +

= + +

x x x x

x x&& &
 (1) 

 

where ( ) ( ) ( ) ( ) ( )( ), , , , ,m r r m rb t Q t Q t Q t Q tτ= + + +x x x x x& & . 

In Eq. (1), ∇  denotes the gradient operator, ( ),bT tx  is the 

blood temperature and ( ),T tx  is the tissue temperature, with over 

dots indicating derivatives with respect to time. Moreover, k , ρ  
and c  stand for thermal conductivity, density and specific heat of 
tissue; bc  and bw  are the specific heat and perfusion rate of blood, 

respectively. The volumetric heat ( ),b tx  contains the metabolic 

and spatial heating terms ( ),mQ tx  and ( ),rQ tx , as well as their 

time derivatives; rτ  is the thermal relaxation time of the biological 

system. The boundary Γ  consists of a part 1Γ  with prescribed 

temperature and a part 2Γ  with prescribed heat flux, with its unit 

outward normal vector represented by n, such that 1 2Γ = Γ ΓU  and 

1 2Γ Γ = ∅I , i.e.: 

 

( ) ( ), ,T t T t=x x  on 1 IΓ ×    (2) 

 
( ) ( ), ,k T t q t∇ ⋅ =x n x  on 2 IΓ ×  (3) 

 
Initial conditions are given by 
  

( ) ( )0,0T T=x x  in Ω     (4) 

  

( ) ( )0,0T T=x x& &  in Ω    (5) 

 
The heat flux obeys the modified Fourier’s law given by 

( ) ( ) ( ), , / ,rt t t k T tτ+ ∂ ∂ = − ∇q x q x x  (Cattaneo, 1958), which 

differs from the classical Fourier conduction law by an additional 
term including the time rate of change of the heat flux multiplied by 

rτ . Notice that the well-known Pennes bioheat equation, which is of 

parabolic type, is readily obtained by assuming 0rτ =  in Eq. (1).  

Due to the lack of analytical Green’s functions for general 
bioheat problems (i.e., with non-homogeneous media, complex-
shaped geometries, etc.), the solution of Eqs. (1)-(5) for the tissue 
temperature is derived by employing the Explicit Green’s Approach 
(ExGA) formulation. In this way, the expression for the tissue 
temperature by means of the ExGA formulation is given by (more 
details on the main steps required for the derivation of the ExGA 
expression can be found in Loureiro et al., 2010; Loureiro and 
Mansur, 2010):  

 

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )
0

0 0 0

0 0

r r

t

r

t

t t t t t t

t t t t d

τ τ

τ τ τ τ

= − + + − +

− + −∫

T G M C G M T

G MT G F

&% %

&%
  (6) 

 

where ( )0t t−G  and ( )0t t−G&  represent the Green’s function and 

its time derivative written in matrix form for the discrete system as 
will be discussed further. The matrix and vector entries appearing in 
Eq. (6) are defined as: 
 

( ) ( )jl j lM N cN dρ
Ω

= Ω∫ yy y    (7) 

 

( ) ( )jl j b b lC N w c N d

Ω

= Ω∫ yy y   (8) 
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( ) ( ) ( ) ( )( )

( ) ( ) ( )
2

, ,

,

j j b b b

j j

F N b w c T d

N q d F

τ τ τ

τ τ

Ω

Γ
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∫

∫

y
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y y y

y y
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with ( )jF τ  being the vector containing the contribution of the 

prescribed temperature on the boundary 1Γ . The vector components 

are defined as: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )2

2

j j l l

j b b l l
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j r b b l

l
r j l
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N w c N d T

T
N c w c N d

T
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τ τ

τ
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τ
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τ

Ω

Ω

Ω

Ω
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∂
+ Ω +

∂

∂
Ω

∂

∫

∫

∫

∫

y

y

y

y
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  (10) 

 
It is worth mentioning that if the convective boundary condition 

is imposed, little modifications must be accomplished in the 
proposed formulation. Taking into account the modified Fourier’s 
Law, the convective boundary condition can be expressed as 

( ) ( ) ( ) ( )( ), , / , ,r ak T t h T t t T t T tτ∇ ⋅ = − ∂ ∂ + −x n x x x , where h  

denotes the convective heat transfer coefficient and aT  the 

temperature of the medium surrounding the convective boundary. In 
this way, the known term is implemented replacing ( ),q τy  by 

( ),ahT τy  into Eq. (9) while the boundary integral 

( ) ( )
c

j lN hN
Γ

Γ∫ yy y  is appended to the matrix C (Eq. (8)). In 

addition, a homogeneous convective boundary condition must be 
adopted to compute the Green’s function. 

Although the convolution integral offers a more general approach, 
it is possible to replace it by a particular solution related to the 
external heat load (Loureiro and Mansur, 2009a-b). Thus, Eq. (6) can 
be rewritten in terms of the particular solution as follows: 

 

( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

0 0 0 0

0 0 0

r r p

r p p

t t t t t t t

t t t t t

τ τ

τ

= − + + − −

+ − − +

T G M C G M T T

G M T T T

&% % %

& &% % %
  (11) 

 

where ( )p tT%  is the particular solution vector corresponding to the 

external heat load vector ( )tF  (see, for instance, Loureiro and 

Mansur (2009a,b) for additional details on how to obtain the 
particular solution for different types of time shape function). 

The major difference between the use of the particular solution 
and the time-domain convolution integral lies in the way in which 
each technique accomplishes the contribution of the heat load vector 
into the final solution. In the particular solution technique, the 
contribution is taken into account analytically as long as the heat 
load shape function is correctly represented, whereas a quadrature 
rule must be used in the convolution integral since the Green’s 

matrix is computed numerically, generating a certain degree of error 
in the final solution.  

The ExGA-Linear � Time-Marching Scheme 
In the original linear θ method proposed by Yu et al. (1998), a 

linear time variation for both the potential and the flux was adopted 
into the standard time-domain boundary element method (TD-
BEM), aiming at producing more stable results in the solution of the 
scalar wave equation. Here, the linear θ method is applied to the 
ExGA formulation, but, unlike the work of Yu et al. (1998), a linear 
time variation for the temperature and its time derivative is 

proposed. Consider a partition of the total time interval 0, ft    into 

N equal time intervals, i.e., [ ]
1

1
0

0, ,
N

f k k
k

t t t
−

+
=

  =  U  with 

0 10 N ft t t t= < < < =K , 1 /k k ft t t t N+∆ = − = ,  kt k t= ∆  and 

( )1 1kt k t+ = + ∆ . The main idea of the ExGA-linear θ method is to 

evaluate firstly the solution at time ( )kt k tθ θ+ = + ∆  from the 

previous known solution at time kt  in a recursive manner. Hence, 

in order to establish recursive expressions, it is first necessary to 
obtain the time derivative expression of the temperature vector by 
differentiating Eq. (11). Then, writing both the temperature and its 
time derivative vectors for the time interval [ ],k kt t θ+ , i.e., replacing 

0t  by kt  and t  by kt θ+ , with the solution at time kt  playing the 

role of an initial condition for the calculation of the solution at time 

kt θ+ , one obtains: 

 

( )( ) ( )( )( )
( ) ( )

( )( )( ) ( ) ( )

k k k
r r p

k k k
r p p

k k k k k
p r p

k
p

t t

t

t t

θ

θ

θ

θ

θ τ τ θ

τ θ

θ τ θ

+

+

+

+

= ∆ + + ∆ − +

∆ − +

= − ∆ + − + ∆ − +

T G M C G M T T

G M T T T

T G K C T T G M T T

T

&% % %

& &% % %

& & &&% % % % %

&%

  (12) 

 
In order to simplify the notation, the superscripts k θ+  and k  

in the above expressions represent values at the times kt θ+  and kt , 

i.e., ( )k
kt

θ
θ

+
+≡T T% %  and ( )k

kt≡T T% % , respectively. Finally, the 

desired solution at time step 1kt +  is then calculated using a linear 

interpolation within the time interval [ ],k kt t θ+ , that is  

 

1

1

1 1

1 1

k k k

k k k

θ

θ

θ
θ θ

θ
θ θ

+ +

+ +

−= +

−= +

T T T

T T T

% % %

& & &% % %

    (13) 

 
where 1θ ≥  is a free parameter employed either to control 

numerical oscillations or to stabilize the numerical solution, as will 
be discussed in the time-domain Green’s function and selection of 
the parameter θ sub-section, as well as in the numerical aspects and 
applications section. 

Because a recursive time-marching scheme is adopted as 
indicated by Eq. (12), the Green’s function and its time derivative 
matrices need to be computed only once at time k kt t t tθ θ θ+= − = ∆ ; 

additionally, the particular solution must be specified only within the 
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time interval [ ],k kt t θ+ . Notice that, to avoid the computation of the 

second time derivative of the Green’s matrix, the relation 

( )( ) ( ) ( )( )r rt t tθ τ τ θ θ∆ + + ∆ = − ∆ +G M C G M G K C& &&  originated by 

considering equilibrium equation concerning the Green’s function at 
time t tθ θ= ∆  is adopted, where entries of the matrix K  are given by  

 

( ) ( )jl j lK N k N d

Ω

= ∇ ⋅ ∇ Ω∫ yy y .  

 
Equation (12) requires the computation of both the temperature 

and its time derivative vectors to carry out the time-marching 
procedure. For the parabolic bioheat equation, however, the time-
marching process is evaluated only with the temperature vector as 

0rτ =  in Eq. (12), yielding: 

 

( ) ( )1 1k k k k
p pt+ += ∆ − +T G M T T T% % % %   (14) 

 
As the Pennes’ equation produces smooth solutions, there is no 

mathematical justification to adopt the linear θ  method for its 
solution, and 1θ =  is used in all calculations. 

Laplace Transform FEM Formulation to Compute the 
Green’s Function Matrices  

This section describes the procedures for computing the numerical 
Green’s function. First, the Green’s function equation in the Laplace 
domain and its discretisation by means of the standard Galerkin finite 
element technique are briefly discussed. In the sequence, the set of 
coupled algebraic equations in the transformed domain is solved back 
to the time-domain by numerical Laplace inversion algorithms and the 
selection of the parameter θ is analyzed. 

Green’s function in the Laplace transform domain 

Let hV  be the finite element space of commonly continuous 
piecewise polynomials on Ω . The classical Galerkin finite element 
method (Hughes, 1987) when applied to the Green function 
equation with homogeneous boundary conditions in the Laplace 
transform domain can be stated as:  

 

find h hG V∈  such that 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 , ,

, ,

h h
r r b b b b j

h h h
j j

W cs c w c s w c G s d

W k G s d W d

τ ρ ρ τ

δ

Ω

Ω Ω

+ + + Ω +

∇ ⋅ ∇ Ω = − Ω

∫

∫ ∫

x

x x

x x y

x x y x x y

 

h hW V∀ ∈    (15) 
 

where ( ) ( )h
i i

i

W N W=∑x x  stands for the weighting function and 

( ) ( ) ( ), ,h
j k kj

k

G s N G s=∑x y x  is the Green’s function 

approximation in the transformed domain for a concentrated heat 
source applied at the nodal point jy  of the finite element mesh. 

Introducing the vector of the Green’s function nodal values in the 

transformed domain ( ) ( )1 , , ,
T

j j kjs G G=g K K , Eq. (15) can be 

rewritten in an equivalent matrix form as:   
 

( )( ) ( )2
r r j js s sτ τ+ + + + =M M C C K g 1   (16) 

 
where the matrices are the same as those defined previously and j1  

with entries kjδ  denotes a unit base vector. Finally, the full Green’s 

matrix in the Laplace domain is constructed from Green’s vectors 

( )j sg  as ( ) ( ) ( ) ( )( )1 2, , , ,js s s s=G g g gK K .  

Time-domain Green’s function and selection of the parameter � 

The nodal values of the time-dependent Green’s function can be 
obtained from their values in the transformed domain, Eq. (16), by 
means of an inverse Laplace transform. In the present paper, the 
Gaver-Stehfest is employed to find a solution in the time-domain. 
Thus, the inversion of the Green’s vector at time t tθ= ∆ , adopting 
the well-known Gaver-Stehfest algorithm (from now on referred 
only as Stehfest), can be written as (Stehfest, 1970) (recall that 
Green’s functions only need to be computed at time t tθ= ∆ ):  
 

( )
1

ln 2 ln 2
N

j i j

i

t V i
t t

θ
θ θ=

 ∆ =  ∆ ∆ 
∑g g   (17) 

 
where 
 

 ( ) ( )
( ) ( ) ( ) ( )( )

( )min , /2 /2
/2

1 /2

2 !
1

/ 2 ! ! 1 ! ! 2 !

i N N
N i

i

k i

k k
V

N k k k i k k i

+

 = + 

= −
− − − −∑   (18) 

 
with N  being an even number.   

The reason for the use of the Stehfest algorithm is based on the 
following advantages, namely: i) easy computational 
implementation; ii)  just one free parameter, i.e., the number of 
summation terms N  is required; and iii)  only real arithmetic 
operations are carried out; thus, making the Stehfest algorithm more 
computationally effective than other inversion algorithms based on 
complex arithmetic operations which generally have more than one 
free parameter to be selected. Differently from the standard Laplace 
formulation, in the present hybrid method, the external thermal 
vector ( )tF  is taken into account directly in the time domain, 

avoiding the requirement of the application of the Laplace 
transform, which, in general, is also done numerically. 

The remaining issue is concerned with the selection of the 
correct values for the parameter θ and its relation with the number 
of summation terms N. Let rτ=M M , = +K C K  and 

rτ= +C M C  and owing to the fact that the condition 
1 1− −=CM K KM C  is satisfied, a diagonalization procedure can be 

applied to decouple Eqs. (12)-(13) and (16). Hence, the parameter θ 
values are determined taking into account the stability analysis of 
following amplification matrix obtained from Eqs. (12)-(13), writing 
the solution at time 1kt +  in terms of the solution at time kt : 

 

( ) ( )( ) ( ) ( )

( ) ( ) ( )2

1 1
1 /

1 1
1 /

i

i

g t c g t g t

g t g t

θ θ θ θ θ
θ θ

ω θ θ θ θ
θ θ

 ∆ + ∆ + − ∆ 
 =
 − ∆ ∆ + − 
 

A
&

&

 (19) 
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where  2

i iω λ=  with iλ  being an eigenvalue, solution of the 

generalized eigenvalue problem given by λ =Mφ Kφ . 
To ensure an unconditionally stable method without the need of 

computing eigenvalues and eigenvectors, the condition for the 
spectral radius of matrix A  given by ( ) 1ρ ≤A  must hold for all the 

range i tω ∆  and 0ic > . This upper bound stability requirement is 

achieved by selecting 1.1θ ≥  for 8N =  and 1.05θ >  for 
10 16N≤ ≤ . Once the stability requirement is hold, a time step 
must be selected in order to carry out the time marching procedure. 
The time step t∆  is readily selected bearing in mind the 

dimensionless parameter / et lβ υ= ∆ , where ( )/k cυ ρ τ=  stands 

for the thermal wave velocity and el  the characteristic element 

length, which is easily estimated by 
e

el d
Ω

= Ω∫ . Although the 

proposed method is unconditionally stable for the θ  values 
discussed above, the value of β  should not be large; otherwise, the 
overall accuracy of the proposed method may be deteriorated during 
the time-marching process.  

Numerical Aspects and Applications 

In this section, some numerical transient bioheat applications are 
presented, illustrating the potentialities of the proposed formulation. 
Initially, a uniform biological tissue model is analyzed and 
numerical results are compared to the available analytical solution in 
order to show the accuracy of the ExGA-linear θ method; 
subsequently, aiming to demonstrate the applicability of the ExGA 
method to deal with heterogeneous media, a triple layer skin model 
is discussed. Finally, the thermal behavior in a square biological 
body subjected to an initial temperature distribution is investigated. 
For all the numerical simulations that follow, the solution is written 
in terms of the elevated temperature ( ) ( ), ,s bT t T t T= −x x  with 

037bT C= . Furthermore, numerical results obtained by the 

proposed hybrid time-Laplace technique, namely, ExGA-Stehfest 
linear θ  method ( 10N =  is employed in all the examples except in 
Fig. 4 where a convergence analysis is performed) are compared to 
those of standard FEM formulations employing HHT-α and Crank-
Nicolson time marching schemes (Hughes, 1987), as well as the 
standard Stehfest Laplace inversion algorithm. 

Homogeneous biological tissue model 

The first application is concerned with the analysis of a 
homogeneous biological tissue at null initial elevated 
temperature 
��(�) = 0.0oC subjected to a sudden temperature 
rise at the skin surface, with the rest of the boundary considered 
as adiabatic. A sketch of the model and the finite element mesh 
constructed with 4311 four-node quadrilateral elements are 
depicted in Fig. 1. It is assumed that, far from skin surface, the 
tissue is not affected by the prescribed temperature; therefore, a 
coarse mesh is constructed near the core body. The thermal 
properties of the tissue and blood are � = 1.0 × 10−3 g.mm−3, c = 
cb = 4.2 J.g−1.oC−1, k = 5.0 × 10−4 W.mm−1.oC−1 and wb = 5.0 × 
10−7 g.mm−3.s−1. The time step is chosen such that � = 1 with el  

being the smallest characteristic element length, yielding ∆� = 0.4 s. 
 

 
(a) 

 
(b) 

Figure 1. Homogeneous biological tissue body: (a) g eometry and 
boundary conditions; (b) domain discretization. 

 
In spite of its geometrical and load simplicity, this example is an 

important benchmark and quite difficult to solve numerically due to 
the thermal wave with discontinuous front caused by the suddenly 
applied temperature when 0rτ > ; besides, the analytical solution is 

available in the literature and its expression is given by (Liu, Chen 
and Xu, 1999): 
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for the hyperbolic equation, while for the parabolic equation one has: 
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Time-history results for the elevated temperature ( ),sT tx  at 

point ( )2.08,1A  (see Fig. 1(a)) for both �� = 0 s (Pennes’ equation) 

and �� = 20 s are depicted in Figs. 2-3; the analytical solution is also 
plotted for comparison. It can be seen that the proposed formulation 
is capable of controlling the numerical oscillations that appear near 
discontinuous solutions of the hyperbolic model. Figures 2-3 clearly 
show the difference between the parabolic (�� = 0 s) and hyperbolic 
(�� = 20 s) models where, for �� = 20 s, the tissue temperature 
remains zero until the wave front reaches the selected position; 
afterwards, there is a jump in the solution with the temperature at 
late times approaching that of the Pennes’ result (�� = 0 s) where no 
jump occurs, indicating the same steady-state solution.  

Figure 2 clearly shows that results produced by the Stehfest 
Laplace inversion algorithm are only accurate for �� = 0 s since the 
Stehfest algorithm is not capable of accurately representing sharp 
solutions. Furthermore, Fig. 2 reveals that high numerical oscillations 
are observed in the HHT-α scheme after the wave front has passed 
through the observation point, while an accurate solution is obtained 
by the Crank-Nicolson method. On the other hand, as can be seen in 
Fig. 3, when �� = 20 s, the ExGA-Stehfest scheme provides unstable 
results for � = 1 since the stability criterion is not satisfied, while 
stable results are achieved for � = 1.2 and � = 1.4, indicating that 
oscillations near the jump are suppressed. To assess the solution close 
to the jump in a more detailed manner for the results presented in Figs. 
2-3, the temperature results are also presented in Table 1. It is 
important to stress that the value of θ  should not be too high since 
smoothing effects at the discontinuity are clearly observed (notice that 
when applied to the Pennes’ equation, i.e. ��  = 0 s, the ExGA-Stehfest 
method also gives accurate solutions, recalling that � = 1 is always 
adopted in this case). Therefore, the use of the linear � method into 
the standard ExGA formulation has the characteristic of not only 
decreasing (or even removing) the numerical oscillations, but also 
stabilizing the solution. A convergence analysis by increasing the 
number of summation terms N in the Laplace inversion algorithm into 
the proposed formulation is carried out and the results are shown in 
Fig. 4. As can be observed results are almost the same according to 
the graph, implying that the ExGA-Stehfest linear � method remains 
convergent even if the value of N is increased. 
 
 

 
Figure 2. Comparison of the tissue temperature time -history results at 
point �(2.08,1) for �� = 0 s and �� = 20 s considering the standard Crank-
Nicolson and HHT −� with � = −� �⁄  time integration schemes as well as 
the Stehfest Laplace inversion algorithm. 

 
 

 

 
Figure 3. Comparison of the tissue temperature time -history results at 
point �(2.08,1) for �� = 0 s and �� = 20 s considering the ExGA-Stehfest 
linear � method with � = 1, � = 1.2 and � = 1.4. 

 
Table 1. Temperature results for the hyperbolic mod el at point A(2.08,1) 
from t = 20 s to t = 40 s considering different numerical schemes. 

 
 

 
Figure 4. Convergence analysis with respect to the number of summation 
terms N of the ExGA-Stehfest linear � method with � = 1.2 and �� = 20 s. 
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Multi-layer skin model 

In this second application, a more realistic model with three 
different layers of tissue (epidermis, dermis and subcutaneous) is 
considered as depicted in Fig. 5(a). The geometry and the boundary 
conditions remain the same as those of the previous example, but a 
more refined mesh (mainly at the epidermis layer) with a total of 
4967 four-node quadrilateral elements is employed as shown in Fig. 
5(b). The thermal properties of the skin tissue and the thickness of 
each layer are given in Table 2. Since a finer mesh is employed due 
to the epidermis layer, the adimensional parameter regarding the 
time step is increased to 1.5β = , yielding 0.25t s∆ =  for �� = 20 s. 

 

 
(a) 

 
(b) 

Figure 5. Heterogeneous biological tissue body: (a)  geometry and 
boundary conditions; (b) domain discretisation. 

 
 

Table 2. Thickness and thermal properties for the t riple layer skin model. 

Layer Epidermis Dermis Subcutaneous 
L i (mm) 8.0x10-2 2.0 10.0 
c (J.g-1.0C-1) 3.6 3.4 3.06 
k (W.mm-1.0C-1) 2.6x10-4 5.2x10-4 2.1x10-4 
ρρρρ (g.mm-3) 1.2x10-3 1.2x10-3 1.0x10-3 
cb (J.g-1.0C-1) 4.2 4.2 4.2 
wb (g.mm-3.s-1) 0.0 5.0x10-7 5.0x10-7 

 
The tissue temperature time history results at point A( 0.04,1) 

(epidermis layer) for �� = 0 s and �� = 20 s are plotted in Fig.  6. 
Figure 6(a) shows that, because of the jump between the initial 
condition and the prescribed boundary condition, the Crank-
Nicolson method produces high oscillations in the response, 
whereas the ExGA-Stehfest scheme for the same time step size 
gives an accurate solution without any oscillation. The results for 
�� = 20 s are plotted in Fig. 6(b). It can be observed again that the 
ExGA-Stehfest scheme produces no oscillations, while the HHT 
yields oscillations mainly at the discontinuity. Moreover, since the 
selected point is very close to the boundary, the wave front rapidly 
reaches it with the response being quite similar to that of the 
Pennes equation (�� = 0 s) thereafter. Figures 7(a) and (b) show 
the temperature time-history results at points B(1.08,1) (dermis 
layer) and C(2.08,1) (interface between dermis and subcutaneous 
layers), respectively. For comparison purposes, results for �� = 10 
s are also plotted in Fig. 7 to show the influence of this parameter 
in the solution. First, it can be seen that the non-homogeneous 
medium significantly affects the response, where a more complex 
response is obtained when compared to the homogeneous case of 
the previous example. This is due to superposition effects 
originated from the reflected thermal waves at the interface 
between layers (observe that, as in the first example, accurate 
results are obtained by the ExGA-Stehfest method for �� = 0 s). 
Finally, in the case of �� = 10 s the wave front reaches points B 
and C faster than that of ��  = 20 s. This is expected since 

decreasing the value of �� implies a rise in the thermal wave speed 
according to its expression. Table 3 presents the temperature 
results from � = 20 s to � = 40 s in order to compare the numerical 
results more clearly for the two values of ��. The temperature 
distribution at time instant � = 15.25 s, for the parabolic and 
hyperbolic models, is displayed in Fig. 8. It is clearly observed 
that the temperature distribution for the parabolic model (infinite 
wave speed) reaches the deeper tissue faster than that of the 
hyperbolic one (finite wave speed). 

 

 
(a) 

 
(b) 

Figure 6. Comparison of the tissue temperature time -history results at 
point �(0.04,1) for �� = 0 s and �� = 20 s: (a) Crank-Nicolson and ExGA-
Stehfest schemes; (b) HHT −� with � = −� �⁄  and ExGA-Stehfest with � = 
1.2 schemes. 

 
 

Table 3. Temperature results for the hyperbolic mod el at point B(1.08,1) 
from t = 20 s to t = 40 s. 
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(a) 

 

 
(b) 

Figure 7. Comparison of the tissue temperature time -history for  �� = 0 s, 
�� = 10 s and �� = 20 s considering the Crank-Nicolson, HHT −� with � = 
−� �⁄  and ExGA-Stehfest linear θθθθ  with � = 1.2 schemes: (a) point 

(((( ))))1.08,1B ; (b) point (((( ))))2.08,1C . 

 
 

 
(a) 

 
(b) 

  
(c) 

Figure 8. Tissue temperature field at time instant t = 15.25 s: (a) �� = 0 s 
considering the ExGA-Stehfest scheme; (b) �� = 10 s considering the 
ExGA-Stehfest linear � scheme with � = 1.2; (c) �� = 20 s considering the 
ExGA-Stehfest linear � scheme with � = 1.2. 

 

 
Figure 9. Geometry and boundary conditions of the s quare biological 

tissue body under initial temperature field over th e domain 0ΩΩΩΩ . 

 
 

 
(a) 

 

 
(b) 

Figure 10. Comparison of the tissue temperature tim e-history 
results at point A(0,0) using a time step size ∆� = 80 s: (a) HHT−� with � 
= −� �⁄  and ExGA-Stehfest with � = 1.2 schemes considering �� = 104 s, 
 ! = 0.0 g.mm−−−−3.s−−−−1 and  ! = 5.0 × 10−−−−7 g.mm−−−−3.s−−−−1; (b) Crank-Nicolson 
and ExGA-Stehfest with � = 1 and � = 1.2 schemes considering �� = 0 s, 
�� = 20 s and  ! = 5.0 × 10−−−−7 g.mm−−−−3.s−−−−1. 
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Two-dimensional bioheat model 

This example is concerned with the thermal analysis in a square 
biological tissue with dimension a = 80 mm subjected to an initial 
temperature condition ( ) 0

0 1.0sT C=x  prescribed over the domain 

( ){ }0 , : / 2 / 2, / 2 / 2x y a x a a y aΩ = − ≤ ≤ − ≤ ≤  as sketched in 

Fig. 9. Due to the symmetry of the problem, only one quarter of the 
domain needs to be modeled, where a uniform mesh of 2500 four-
node quadrilateral elements is employed to spatially discretize the 
model. The thermal properties of the tissue have been chosen as 

3 31.0 10 /g mmρ −= × , 04.2 /bc c J g C= = , k = 5.0 × 10−4 

W/mmoC and wb = 5.0 × 10−7 g/mm3s. The numerical analysis is 
performed taking into consideration different values for thermal 
relaxation time and blood perfusion rate and the time step is selected 
such that 0.345β = . 

First the thermal relaxation time and the blood perfusion rate 
are taken, respectively, as 410r sτ = and 30.0 /bw g mm s= , which 

is common in cryogenic surgery; see for instance (Lu et al., 

1998) the time-history results at point ( )0,0A  (see Fig. 9) that 

are plotted in Fig. 10(a) (results for the same thermal relaxation 
time but with a blood perfusion rate 7 35.0 10 /bw g mm s−= ×  are 

also depicted in Fig. 10(a) for comparison). As can be observed, 
the blood perfusion rate 7 35.0 10 /bw g mm s−= ×  produces a more 

damping solution than the null perfusion rate (notice that the 
ExGA-Stehfest method with � = 1.2 for 30.0 /bw g mm s=  

provides a more clear solution without the high oscillations 
presented in the HHT scheme results). Next when the thermal 
relaxation time is assumed to be �� = 20 s, the results become 
very similar to that of the Pennes’ equation (�� = 0 s) as shown 
in Fig. 10(b). It is worth pointing out that since the wave 
phenomenon does not appear when ��  = 20 s, the ExGA-Stehfest 
method with � = 1 becomes stable. 

Conclusions 

In this paper, a hybrid time-Laplace domain technique based on 
numerical Green’s functions has been proposed for the solution of 
hyperbolic bioheat transfer models. As an additional advantage of 
the proposed formulation, the parabolic model can also be solved by 
just setting 0rτ =  without considering any further numerical 

considerations. The novelty of the present work is the introduction 
of the linear � method into the standard ExGA time-marching 
scheme, establishing the so-called ExGA-linear � method. In the 
ExGA-linear � method, the temperature response is firstly computed 
at time ( )kt k tθ θ+ = + ∆  from the previous known solution at time 

kt k t= ∆ , and then linearly interpolated to obtain the solution at time 

( )1 1kt k t+ = + ∆ . As a result, only the Green’s functions represented 

by the Green’s matrices at time t tθ θ= ∆  need to be computed; 

herein, this is accomplished by the Stehfest Laplace inversion 
algorithm. 

On the basis of the numerical examples, it can be stated that 
accurate results are produced by the ExGA-Stehfest linear � 
method. Furthermore, the proposed formulation with 1θ >  can be 
successfully employed not only to deal with sharp fronts, but also to 
stabilize the numerical solution in the hyperbolic model. Although 
numerical oscillations near discontinuities can be suppressed when 

1θ >  is adopted, the value of θ  should not be too high to avoid the 
introduction of smoothing effects. For the parabolic model, 

however, the parameter 1θ =  may be adopted as smooth solutions 
are always expected. Thus, an effective unified numerical technique 
to solve both parabolic and hyperbolic bioheat problems can be 
developed through the proposed formulation. 
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