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This paper presents a time-domain formulation calplicit Green’s approach (ExGA)
linear ¢ method for the solution of the bioheat equatiorarttg from the hyperbolic
bioheat equation, which includes the parabolic asex special case, the lineamethod is
incorporated into the standard ExGA time marchirdnesne. The numerical Green'’s
function is firstly computed in the Laplace transfcdomain and then back-transformed to
the time domain through the Stehfest inversionrétyn. The proposed formulation has
the properties of stabilizing the results and sggsing numerical oscillations that appear
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Introduction

Numerical methods have been widely used as a polverdl
for the solution of many problems in the thermoldmy field. There
are several different mathematical models that banused to
describe the bioheat transfer process in livinguts (Rubinsky,
2006; Khanafer and Vafai, 2009). Among these, tlieniés’ bioheat
equation is frequently adopted in applications swh cancer
hyperthermia therapies, cryosurgery, laser surgettyermal
diagnostics, skin burns and thermal comfort analyEhe literature
reports a great deal of works on the numerical iodgeof the
parabolic Pennes equation considering different erigal
technigues (Chan, 1992; Torvi and Dale, 1994; Ind Xu, 2000;
Dai, Yu and Nassar, 2004; Rubinsky, 2006; Presgréuedes and
Scofano Neto, 2009), e.g., finite difference, #nielement and
boundary element methods, each of them with its advantages
and disadvantages depending on the problem undeidasation.
However, there are some applications of extreméigrtstime
duration or at very low temperature (e.g., cryogeirgery, laser-
induced thermal damage, etc.) for which the parabBlennes
bioheat equation, which assumes an infinite thersted of
propagation according to Fourier's law, is not adgg and the
mathematical model may be more accurately describpedhe
hyperbolic bioheat equation (Lu, Liu and Zeng, 1,998, Chen and
Xu, 1999; Tunga, 2009; Ozen, Helhel and Cerez@82Qiu, 2008;
Xu, Seffen and Lu, 2008; Zhou, Zhang and Chen, R0U8e
hyperbolic bioheat equation is characterised by fihige thermal
speed of propagation of the thermal waves duedafiplication of
a modified Fourier’s law (Cattaneo, 1958).

Green’s functions are an important tool in solvipgrtial
differential equations since the solution of a peab subjected to
any kind of initial conditions, boundary conditioasd internal heat
generation can be obtained through integral equsitionce the
Green’s function is known. Both analytical and nucw
techniques for the solution of heat conduction [@wis based upon
Green’s functions are well-documented (Beck, 198%; and Chu,
1999; Wrobel, 2002). However, the solution of baheroblems
using Green’s functions is not widely popular (NemvmLele and
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Bowman, 1990; Chan, 1992; Gao B., Langer and C4895; Deng
and Liu, 2002; Li, Liu and Yue, 2009), with few pished papers
which concentrate mainly on the parabolic Pennestion. It is
well known that one of the major drawbacks in tldusion of
partial differential equations by Green’s functibased techniques
is the lack of analytical Green’s functions for quivated
geometries and/or variable material propertiescifacumvent these
disadvantages, a formulation named Explicit GreeAfsproach
(ExGA) was proposed in Mansur et al. (2007) andrkiva (2007).
The technique is based on the use of numerical Grdanctions
instead of analytical ones, and combine concepis footh finite
element method (FEM) (Hughes, 1987) and time-dorhaimdary
element method (BEM) (Mansur, 1983; Wrobel, 2002%
demonstrated by Loureiro, Mansur and VasconcelR309) and
Loureiro and Mansur (2010). Hence, the flexibildgffered by the
ExGA method makes it very general and applicabl@aoy classes
of problems.

The main aim of this paper is to present a novaktdomain
formulation for the solution of the hyperbolic besdt equation. The
proposed time-domain formulation combines the EXGA
methodology (Loureiro et al., 2010) with the lineér method
presented in Yu et al. (1998) in a BEM context,rgjvrise to a new
formulation denominated ExGA-linea# method. Following the
works of Loureiro, Mansur and Vasconcellos (2008 &oureiro
and Mansur (2009a), a Laplace transform technigueonjunction
with the FEM is applied to the Green’'s function atjon;
subsequently, the Gaver-Stehfest Laplace inversibgorithm
(Stehfest, 1970) is employed to compute the Grefemistion in the
time-domain. Since Green’s functions are firstlynfalated taking
into account the Laplace transform and then inaeted into the
ExGA-linear # time-marching scheme, a hybrid time-Laplace
technique is derived, resulting in the ExGA-Stehfémear &
method. The ExGA-linea¥ method is suited not only to stabilize
the numerical results but also to suppress nunie(gurious)
oscillations that may appear near discontinuousitisnls in the
hyperbolic model. Besides, its computer impleméotats very
straightforward. The applicability, potentialitiead accuracy of the
technique are demonstrated by considering some neahe
examples with discontinuous solutions in the hypketmodel.
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Nomenclature respectively. The volumetric hed](x,t) contains the metabolic
C = specific heat of tissue).g™.°C" and spatial heating term®, (x,t) and Q,(x,t), as well as their
G, = specific heat of blood).g™.°C™ time derivatives;7, is the thermal relaxation time of the biological
G(t) = Green's matrix system. The boundary consists of a part™; with prescribed
g, (s) = Green’s vector in the Laplace domain temperature and a paft, with prescribed heat flux, with its unit

outward normal vector representedriysuch thatr =, Ul", and

k = thermal conductivity of tissug@/.mni*.° C* )

. . . MmNr,=0,ie.
N(x) = interpolation function
Q = spatial heatingW.mm?® T(xt)=T(x,t) on [ xI 2
Q. = metabolic heat of tissu¢/.mm?
d(x,t) = prescribed boundary heat flux,. mm? KOT(x, ) =7(x, ) on I,xI €)
T(xt) = tissue temperature, °C

I Initial conditions are given by
T,(x) =initial temperature, °C
T(x,t) = prescribed boundary temperature, °C T(x,0)=Ty(x) in Q 4)
T,(x,t) = blood temperature, °C _ .
T(t)  =temperature vector T(x.0)=To(x) in 0 ®)
T(t)  =time derivative of the temperature vector The heat flux obeys the modified Fouriers law givey
Tp (t) = particu|ar solution vector q(X,t) + rraq(x,t) /ot = —kDT(X,t) (Cattaneo, 1958), which
Vo = finite element space differs from the classical Fourier conduction lay &n additional

= perfusion rate of bloodg.mni®. s* term including the time rate of change of the tilee¢ multiplied by

% P ' ' 7, . Notice that the well-known Pennes bioheat equatidhich is of
w" = weighting function

parabolic type, is readily obtained by assumipg-0 in Eq. (1).
Greek Symbols Due to the lack of analytical Green's functions fgeneral

. = Kronecker delta bioheat problems (i.e., with non-homogeneous med@amnplex-
J
shaped geometries, etc.), the solution of Eqs(5)Lfer the tissue

5([)] = dirac delta function temperature is derived by employing the Explicie@r's Approach
At =time step size, S (ExGA) formulation. In this way, the expression ftire tissue
o = density of tissueg.mni® temperature by means of the EXGA formulation isegivy (more
o = linear & method parameter details on the main steps r_equwed _for the devatf the_ ExGA

B o expression can be found in Loureiro et al., 2010urkiro and
T, = thermal relaxation times Mansur, 2010):
A = eigenvalue
r = Lipschitz boundary T(t)= (G (t-to)(M +7,C)+7,G (t-toM )I: (to) +
Q = open bounded domain .

- (6)
Mathematical Equations 1,G(t=to)MT (to) + |G (t-7)F (r)dr

Let O ¢ R? be an open bounded domain with Lipschitz b

boundary ' =0Q , where d is the number of spatial dimensions,

and let | :(O,If] be the total time interval of the analysis, withwhere G(t-to) and G(t-to) represent the Green's function and

its time derivative written in matrix form for thdiscrete system as

t; >0. The governing equation for hyperbolic bioheamnsfer | 1 e giscussed further. The matrix and vectdiries appearing in

problems reads (Liu, Chen and Xu, 1999): Eq. (6) are defined as:
DT ) w5l 3 T ) ) SN VL @)
=7,ocT(xt) +(pc+7, wg) T(x, ) )

whereb(x,t) = Q,(x,t) + Q,(x,t)+rr(Qn(x,t)+ Q(xt))

| | ¢ =[N mwsnm @, ®
In Eq. (1), O denotes the gradient operatdf,(x,t) is the

Q
blood temperature anﬂf(x,t) is the tissue temperature, with over

dots indicating derivatives with respect to timeorgover, k, p

and ¢ stand for thermal conductivity, density and spedifeat of

tissue; c, and w, are the specific heat and perfusion rate of blood,
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F(0)= [N 0)(600)+ e Tly.r) @,

Q

[n oo, -7

2

)

with F,(7) being the vector containing the contribution o th

prescribed temperature on the boundByy The vector components
are defined as:

F (1)

Jom wnan ) @, 7+

Q

jN,(y)mgN(y) ®Q, T(7)+
(10)

N, (y)(oc+7,w ) N(y) @,

—

0T (1)
or?

r [M e (),

It is worth mentioning that if the convective boang condition
is imposed, little modifications must be accompdighin the
proposed formulation. Taking into account the miedifFourier’s
Law, the convective boundary condition can be esgrd as

KOT(x,t)0h =-h(z,0 T(x, ) /o t+ T(x, ) - T(x,)), where h
denotes the convective heat transfer coefficient an the

temperature of the medium surrounding the convedtisundary. In
this way, the known term is implemented replaciﬁ@y,r) by

hT,(y.7) Eq. (9) the

J. N;(y)hN(y)r, is appended to the matri€ (Eq. (8)). In
re

into while boundary

addition, a homogeneous convective boundary camdithust be
adopted to compute the Green’s function.

Although the convolution integral offers a more gexh approach,
it is possible to replace it by a particular santirelated to the
external heat load (Loureiro and Mansur, 2009&hjis, Eq. (6) can
be rewritten in terms of the particular solutiorf@bws:

T(t)= (G (t-to)(M +7,C) +7,G (t-to)M )(f (to) =T (to))

#16(1-0)M  t0) T 1)) #T (4 a

where Tp(t) is the particular solution vector correspondinghe

external heat load vectoF(t) (see, for instance, Loureiro and

Mansur (2009a,b) for additional details on how tbtain the
particular solution for different types of time gleafunction).

The major difference between the use of the pdaticgolution
and the time-domain convolution integral lies i thay in which
each technique accomplishes the contribution ohtret load vector
into the final solution. In the particular solutidechnique, the
contribution is taken into account analytically laag as the heat
load shape function is correctly represented, wds@e quadrature
rule must be used in the convolution integral sitite Green's
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matrix is computed numerically, generating a cartiégree of error
in the final solution.

The EXGA-Linear 8 Time-Marching Scheme

In the original linea® method proposed by Yu et al. (1998), a
linear time variation for both the potential ané flux was adopted
into the standard time-domain boundary element ouktfirD-
BEM), aiming at producing more stable results ia $olution of the
scalar wave equation. Here, the lin@amethod is applied to the
ExGA formulation, but, unlike the work of Yu et #.998), a linear
time variation for the temperature and its time idgive is

proposed. Consider a partition of the total timerival [O,tf] into

N-1
N equal time intervals, i.e., [O,tf}zu[tk,tkﬂ] with
k=0

and

0=t <t <..<t =t,, At=t, -t =t /N, t =KAt
(k+1)At. The main idea of the ExGA-line@r method is to

tk+1 -

evaluate firstly the solution at time,,,=(k+6)At from the

previous known solution at tim(;< in a recursive manner. Hence,

in order to establish recursive expressions, iir® necessary to
obtain the time derivative expression of the terapge vector by
differentiating Eq. (11). Then, writing both thereerature and its

time derivative vectors for the time interv[aL,tM] , i.e., replacing
t, by t, andt by t,,,, with the solution at time, playing the

role of an initial condition for the calculation tife solution at time
t..o ,» ONE Obtains:

Fheo _ (G (ent)(M +7,.C)+7,G (@M )(fk _T~;I)() +

G (@)m (TE=TK)+7 )
| L, @
700 =G (@) (K +C )T KT K+ 16 (@M 44+
-l'ig+9

In order to simplify the notation, the superscrifts 6 and k
in the above expressions represent values at sty ,, andt,,

ie. T’k+‘ng(tk+5) and ‘IN'kE'I:(tk), respectively. Finally, the
desired solution at time ste,, is then calculated using a linear
interpolation within the time intervdk,.t,,,| , that is

-’I’-k+l:1-"|4k+€+ g_ll’-’k

g g (13)
-’i’-k+l:1-".|‘k+€+ g_]-l’;’k

g g

where =1 is a free parameter employed either to control
numerical oscillations or to stabilize the numdrgalution, as will
be discussed in the time-domain Green's functioth selection of
the parameted sub-section, as well as in the numerical aspeuds a
applications section.

Because a recursive time-marching scheme is adopted
indicated by Eg. (12), the Green’s function andtiitse derivative
matrices need to be computed only once at tigret,,, —t, = 6At;

additionally, the particular solution must be sfiedi only within the
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time interval [t,.t,,,] . Notice that, to avoid the computation of theyansformed domaing, ()= (G, G )T Eq. (15) can be

second time derivative of the Green's matrix, thelation
G(ant)(M +7,C)+7,G ()M =G (ant)(K +C ) originated by
considering equilibrium equation concerning thedaie function at
time t, = 8\t is adopted, where entries of the matkixare given by

K, ZIDNJ. (v)ION (y) @, .

Q

Equation (12) requires the computation of bothttraperature
and its time derivative vectors to carry out theeimarching
procedure. For the parabolic bioheat equation, hewehe time-
marching process is evaluated only with the tentpegavector as
7, =0 in Eq. (12), yielding:

ThL=G (am (T T )7 ot (14)

As the Pennes’ equation produces smooth solutibese is no
mathematical justification to adopt the line& method for its
solution, and@ =1 is used in all calculations.

Laplace Transform FEM Formulation to Compute the
Green'’s Function Matrices

This section describes the procedures for comptitiegumerical
Green'’s function. First, the Green'’s function egqrain the Laplace
domain and its discretisation by means of the stahGalerkin finite
element technique are briefly discussed. In theiemee, the set of
coupled algebraic equations in the transformed @domaolved back
to the time-domain by numerical Laplace inversilgoathms and the
selection of the paramet@iis analyzed.

Green’s function in the Laplace transform domain

rewritten in an equivalent matrix form as:

(r,Msz+(M +7C ) s+C +K )gj (9=1,

]

(16)

where the matrices are the same as those defiestbpsly andl,
with entries ka denotes a unit base vector. Finally, the full Giee
matrix in the Laplace domain is constructed frone€srs vectors

9,(s) asG(s)=(9.(9.%(9.- 5 (3.

Time-domain Green'’s function and selection of the grameter 6

The nodal values of the time-dependent Green'stiomecan be
obtained from their values in the transformed domEiq. (16), by
means of an inverse Laplace transform. In the ptepaper, the
Gaver-Stehfest is employed to find a solution ia ttme-domain.
Thus, the inversion of the Green'’s vector at time@At , adopting
the well-known Gaver-Stehfest algorithm (from now referred
only as Stehfest), can be written as (StehfestOl9iecall that
Green’s functions only need to be computed at timet ):

g (@)="23yg () an
: a4 "'\ ant
where
min(i N /2) N/2
vi=(-" Y (2K 18)

e (N7 2= K) e (k=1)1 (= K (2 k=t

with N being an even number.

The reason for the use of the Stehfest algorithbaged on the
following advantages, namely: i) easy computational
implementation;ii) just one free parameter, i.e., the number of

n - .
~ Let V7 Dbe the finite element space of commonly continuougymmation termsN is required; andii) only real arithmetic
piecewise polynomials o . The classical Galerkin finite element gperations are carried out; thus, making the Ssélafigorithm more

method (Hughes, 1987) when applied to the Greenctifum
equation with homogeneous boundary conditions m lthplace
transform domain can be stated as:

find G"OV" such that

-[W“(x)(rrpc§ +(porr, we) & wg Gxy, Jsd +

IDW“(X)D@@“(X,yJ,S) @, :I W(x)3(x-y,) @,

aow"ovh (15)

computationally effective than other inversion ailtons based on
complex arithmetic operations which generally hen@re than one
free parameter to be selected. Differently fromgtendard Laplace
formulation, in the present hybrid method, the maé thermal

vector F(t) is taken into account directly in the time domain,

avoiding the requirement of the application of theplace
transform, which, in general, is also done numéyica

The remaining issue is concerned with the selectibrthe
correct values for the parameterand its relation with the number

of summation termsN. Let M=rM, K=C+K and

C=M+rC and owing to the fact that the condition

CM K =KM € s satisfied, a diagonalization procedure can be

where W"(x) = >° N (x) W stands for the weighting function and applied to decouple Egs. (12)-(13) and (16). Hettee parameted

function

éh(x,yj,s)=ZN(x)QJ($ is the Green's

approximation in the transformed domain for a comeeed heat

source applied at the nodal poigt of the finite element mesh.

Introducing the vector of the Green’s function nodalues in the

462 / Vol. XXXIV, No. 4, October-December 2012

values are determined taking into account the Igtalinalysis of
following amplification matrix obtained from Eq4.2)-(13), writing
the solution at time, ,, in terms of the solution at timg; :

1(91(9At)+q g(ant)+(o-1)/6

: o
-2 afg(am)

%g(em)+(e—1)/e

ABCM
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as0

where «f =4 with A being an eigenvalue, solution of the

generalized eigenvalue problem given byi¢ = K¢ . o oD T | 2mm
To ensure an unconditionally stable method withtbetneed of ¥ _

computing eigenvalues and eigenvectors, the camdifor the X 450

spectral radius of matriA given byp(A) <1 must hold for all the 208

range At and ¢, >0. This upper bound stability requirement is

achieved by selectingg=1.1 for N=8 and 6>1.05 for
10< N <16. Once the stability requirement is hold, a timepst
must be selected in order to carry out the timectiag procedure.
The time step At is readily selected bearing in mind the

(b)

dimensionless parametgﬂ’:uAt/le,whereUZ k/(,OCZ') stands Figure 1. Homogeneous biological tissue body: (a) g eometry and

for the thermal wave velocity and, the characteristic element Poundary conditions; (b) domain discretization.
length, which is easily estimated by = _L)edQ' Although  the In spite of its geometrical and load simplicityistexample is an
important benchmark and quite difficult to solvenrerically due to
the thermal wave with discontinuous front causedh®y suddenly
applied temperature when > 0; besides, the analytical solution is

proposed method is unconditionally stable for tie values
discussed above, the value Gf should not be large; otherwise, the
overall accuracy of the proposed method may beidet¢éed during

the time-marching process. available in the literature and its expressioniieg by (Liu, Chen
and Xu, 1999):
Numerical Aspects and Applications Cb
b
In this section, some numerical transient bioheatieations are T. COS{\] X L ]

presented, illustrating the potentialities of thiegwsed formulation.
Initially, a uniform biological tissue model is dyzed and cos}{ / ] (20)
numerical results are compared to the availablé/aca solution in

order to show the accuracy of the ExGA-line&r method;

subsequently, aiming to demonstrate the applitgtli the ExGA wt/zz(pﬁcogp t+ B, sing,{ si sn 1/2)m «
method to deal with heterogeneous media, a trigterl skin model L

is discussed. Finally, the thermal behavior in aasq biological
body subjected to an initial temperature distribnitis investigated.
For all the numerical simulations that follow, tha&lution is written

in terms of the elevated temperatufie(x,t)=T(x,t)~T, with
Tcos}{ lwbcb (x- LJ

n=1

for the hyperbolic equation, while for the parab@guation one has:

T,=37°C. Furthermore, numerical results obtained by the
proposed hybrid time-Laplace technique, namely, A8kehfest ’{
cos 1/ j

linear® method (N =10 is employed in all the examples except in

Fig. 4 where a convergence analysis is performsslcampared to

those of standard FEM formulations employing HlBnd Crank- [ -1’ ”2+%%}

Nicolson time marching schemes (Hughes, 1987), el¢ as the Aﬁ ool a2 3 sin(n-l/Z)lTx
standard Stehfest Laplace inversion algorithm. L

(21)

Homogeneous biological tissue model where

The first application is concerned with the anadysif a
homogeneous biological tissue at null initial el@h - :l(“ r,wncoj
temperaturelyo(x) = 0.0°C subjected to a sudden temperature T
rise at the skin surface, with the rest of the ltary considered
as adiabatic. A sketch of the model and the fielement mesh k
constructed with 4311 four-node quadrilateral eletaeare (n-1/2)7
depicted in Fig. 1. It is assumed that, far fronnsgurface, the Y, =
tissue is not affected by the prescribed tempeeattirerefore, a
coarse mesh is constructed near the core body. tiiemal (22)
properties of the tissue and blood are 1.0 x 10° g.mm?, ¢ =
¢, = 4.2J.g1°C" k=5.0 x 10* W.mm'.°C™* andw, = 5.0 x A=- 5
107 g.mm3s™. The time step is chosen such tigat 1 with I WG |2 +(2“7_17Tj
being the smallest characteristic element lengtiding At = 0.4s. 2
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Time-history results for the elevated temperatt]’géx,t) at
point A(2.08,) (see Fig. 1(a)) for both. = 0s (Pennes’ equation)

andz, = 20s are depicted in Figs. 2-3; the analytical solui®also
plotted for comparison. It can be seen that th@@sed formulation
is capable of controlling the numerical oscillasaihat appear near
discontinuous solutions of the hyperbolic modegufes 2-3 clearly
show the difference between the parabaljc£ 0s) and hyperbolic
(r, = 20 s) models where, for,, = 20 s, the tissue temperature
remains zero until the wave front reaches the ssdeposition;
afterwards, there is a jump in the solution witk temperature at
late times approaching that of the Pennes’ resilt(0s) where no
jump occurs, indicating the same steady-stateisolut

Figure 2 clearly shows that results produced by $tehfest
Laplace inversion algorithm are only accuratedor= 0 s since the
Stehfest algorithm is not capable of accuratelyrasgnting sharp
solutions. Furthermore, Fig. 2 reveals that higmerical oscillations
are observed in the HHd-scheme after the wave front has passed
through the observation point, while an accuratati®n is obtained
by the Crank-Nicolson method. On the other handiamsbe seen in
Fig. 3, whenr,. = 205, the ExGA-Stehfest scheme provides unstable
results for6 = 1 since the stability criterion is not satisfieghile
stable results are achieved for= 1.2 andd = 1.4, indicating that
oscillations near the jump are suppressed. To fisesolution close
to the jump in a more detailed manner for the teqresented in Figs.
2-3, the temperature results are also presente@iable 1. It is
important to stress that the value &f should not be too high since
smoothing effects at the discontinuity are cleabigerved (notice that
when applied to the Pennes’ equation,z.e= 0 s the EXGA-Stehfest
method also gives accurate solutions, recalling ¢ha 1 is always

s

Temperature T_(°C)

1=0s:
-~ Analytical
o ExGA-Stehfest
1=20s:
— Analytical
ExGA-Stehfest(6=1)
—— EXGA-Stehfest(6=1.2)

T T T
40 60 80 100 120 140
Time (s)

Temperature T, (°C)

T1=20s:
T

Analytical
—— EXGA-Stehfest (6=1.4)

T T T T T T
40 60 80 100 120 140

Time (s)

adopted in this case). Therefore, the use of tiealid method into |, ... g methodwith 6 =1 6=12and § = 1.4,

the standard ExGA formulation has the characterisfi not only
decreasing (or even removing) the numerical osaiia, but also

stabilizing the solution. A convergence analysis ibgreasing the Table 1. Temperature results for the hyperbolic mod
from t =20 s to t = 40 s considering different numerical schemes.

number of summation terniéin the Laplace inversion algorithm into

Loureiro et al.

Figure 3. Comparison of the tissue temperature time  -history results at
point A(2.08,1) for T, = 0 s and T, = 20 s considering the ExGA-Stehfest

el at point A(2.08,1)

the proposed formulation is carried out and theltesre shown in
Fig. 4. As can be observed results are almostdhe saccording to

the graph, implying that the ExGA-Stehfest linéamethod remains

t(s) | Analytical (n=50000) HHT-a Stehfest ExGA-Stehfest ExGA-Stehfest
g=12 f=14
20 5.85071x 10°¢ 5.81534x 1071° | 3.64975 7.5801x 1073 138752 x 1072
x107*

convergent even if the value Nfis increased.

22

3.80784x 10°*

170788 x 1077 | 1.21453 | —1.82348x 10~* | —2.40065x 102

24

—5.90609 x 10~*

422401 x 10 | 212777 | —9.0257x 1072

3.65385 x 1071

26 | —1.20596 x10~* 4.82645x 1071 | 3.01028 1.84879 2.10228
: 28 6.1249 5.72428 3.80818 4.70248 4.32009
30 6.22315 6.04386 4.49844 5.9651 5.67037
8 32 6.31494 6.64628 5.07783 6.27432 6.19036
34 6.40324 6.29077 5.55415 6.39532 6.37845
36 6.48866 6.51374 5.9403 6.48763 6.48324
) 6 38 6.5703 6.53727 6.25061 6.57093 6.56951
T r 40 6.6488 6.67947 6.49886 6.65201 6.64869
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Figure 2. Comparison of the tissue temperature time  -history results at
point A(2.08,1) for T,, =0 s and T, = 20 s considering the standard Crank-

Nicolson and HHT —a with & = —1/3 time integration schemes as well as

the Stehfest Laplace inversion algorithm.
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Figure 4. Convergence analysis with respect to the number of summation
terms N of the EXGA-Stehfest linear @ method with 8 = 1.2 and T, =20s.
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Solution of Hyperbolic Bioheat Transfer Problems by Numerical Green’s Functions: The ExGA-Linear 6 Method

Multi-layer skin model

In this second application, a more realistic modéh three
different layers of tissue (epidermis, dermis anticsitaneous) is
considered as depicted in Fig. 5(a). The geometdythe boundary
conditions remain the same as those of the prevégasple, but a
more refined mesh (mainly at the epidermis layeithwa total of
4967 four-node quadrilateral elements is employedhown in Fig.
5(b). The thermal properties of the skin tissue dredthickness of
each layer are given in Table 2. Since a finer niegmployed due
to the epidermis layer, the adimensional parametgarding the
time step is increased 168 =1.5, yielding At =0.25 for 7, = 20s.

Subcutaneous

90

(@)

(b)
Figure 5. Heterogeneous biological tissue body: (a)
boundary conditions; (b) domain discretisation.

geometry and

Table 2. Thickness and thermal properties for the t  riple layer skin model.

Layer Epidermis | Dermis | Subcutaneou
L; (mm) 8.0x10° 2.0 10.0
¢ (3.g1.°cY 3.6 3.4 3.06
k (W.mm1°C? 2.6x1C" | 5.2xacC* 2.1x1(*
p (g.mm®) 1.2x10° | 1.2x10° 1.0x10°
c, J.g2.%ch 4.2 4.2 4.2
w, (g.mm3.sY) 0.0 5.0x10 5.0x10’

The tissue temperature time history results at (pa{n0.04,1)
(epidermis layer) for,, = 0 sandt, = 20s are plotted in Fig. 6.
Figure 6(a) shows that, because of the jump betwtheninitial
condition and the prescribed boundary conditione f@rank-
Nicolson method produces high oscillations in thesponse,
whereas the ExGA-Stehfest scheme for the same sime size
gives an accurate solution without any oscillatidhe results for
7, = 20s are plotted in Fig. 6(b). It can be observed adhat the
ExGA-Stehfest scheme produces no oscillations, evttie HHT
yields oscillations mainly at the discontinuity. Mover, since the
selected point is very close to the boundary, thegenfront rapidly
reaches it with the response being quite similarthtat of the
Pennes equatiort( = 0 ) thereafter. Figures 7(a) and (b) show
the temperature time-history results at poiB(4€.08,1) (dermis
layer) andC(2.08,1) (interface between dermis and subcutaneol
layers), respectively. For comparison purposesjltesor t, = 10
s are also plotted in Fig. 7 to show the influenée¢his parameter
in the solution. First, it can be seen that the-homogeneous
medium significantly affects the response, wheraae complex
response is obtained when compared to the homogsnzse of
the previous example. This is due to superpositeffects
originated from the reflected thermal waves at theerface
between layers (observe that, as in the first exeamaccurate
results are obtained by the ExGA-Stehfest method,fo= 0 s).
Finally, in the case of, = 10s the wave front reaches points B
and C faster than that of, = 20 s. This is expected since
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decreasing the value of implies a rise in the thermal wave speed
according to its expression. Table 3 presents #raperature
results fromt = 20sto t = 40sin order to compare the numerical
results more clearly for the two values tpf The temperature
distribution at time instant = 15.25s, for the parabolic and
hyperbolic models, is displayed in Fig. 8. It izatly observed
that the temperature distribution for the parabaticdel (infinite
wave speed) reaches the deeper tissue faster ttanof the
hyperbolic one (finite wave speed).
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Figure 6. Comparison of the tissue temperature time  -history results at
point A(0.04,1) for T,, =0 s and T, = 20 s: (a) Crank-Nicolson and ExGA-

Stehfest schemes; (b) HHT —a with @ = —1/3 and ExGA-Stehfest with 0 =
1.2 schemes.

25 50 150

Table 3. Temperature results for the hyperbolic mod
fromt=20stot=40s.

el at point B(1.08,1)

t(s) HHT-a ExGA-Stehfest HHT-a ExGA-Stehfest
7, =10s r,=10s r, =205 r, =20s
20 7.86997 7.88996 8.3172 8.41075
22 8.01969 8.01031 8.54977 8.55601
24 8.12319 8.1191 8.58252 8.61742
26 8.22444 8.26474 8.69824 8.69083
28 8.82423 8.82098 8.67786 8.74571
30 9.13848 9.23164 8.75932 8.79887
32 9.38728 9.43417 8.85777 8.85546
34 9.58861 9.57363 8.89253 8.91656
36 9.73481 9.69652 8.96901 8.89962
38 9.83824 9.80875 8.76211 9.29635
40 9.94776 9.91499 10.0494 9.90154
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Figure 7. Comparison of the tissue temperature time  -history for 7, = 0's,
T, =10 s and T, = 20 s considering the Crank-Nicolson, HHT —a with a =
—1/3 and ExGA-Stehfest linear @ with @ = 1.2 schemes: (a) point

B(1.08,1); (b) point C(2.08,) .
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Figure 8. Tissue temperature field at time instant t=1525s:(a) T,=0s
considering the ExGA-Stehfest scheme; (b) T, = 10 s considering the
EXGA-Stehfest linear 6 scheme with 0 = 1.2; (c) T, = 20 s considering the
ExGA-Stehfest linear 6 scheme with @ = 1.2.
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Solution of Hyperbolic Bioheat Transfer Problems by Numerical Green’s Functions: The ExGA-Linear 6 Method

Two-dimensional bioheat model

This example is concerned with the thermal analyse square
biological tissue with dimensioa = 80 mm subjected to an initial

temperature conditiorl,(x) =1.0°C prescribed over the domain

Q,={(xy):-al2<s xs al2-al2< y< a/3 as sketched in

Fig. 9. Due to the symmetry of the problem, onle @uarter of the
domain needs to be modeled, where a uniform mes5@0 four-
node quadrilateral elements is employed to spgtidibcretize the
model. The thermal properties of the tissue havenbehosen as
p=1.0x10%g /mn?, c=¢ =4.2J/dC, k 5.0 10*
W/mniC andw, = 5.0 x 10’ g/mn?s. The numerical analysis is
performed taking into consideration different valufr thermal
relaxation time and blood perfusion rate and threetstep is selected
such that =0.345.

First the thermal relaxation time and the bloodfpsion rate
are taken, respectively, as =10"sandw, =0.0g / mni s, which
is common in cryogenic surgery; see for instance @t al.,
1998) the time-history results at poin(0,0) (see Fig. 9) that

are plotted in Fig. 10(a) (results for the samented relaxation
time but with a blood perfusion rate, =5.0x 10" g /mnf < are
also depicted in Fig. 10(a) for comparison). As banobserved,
the blood perfusion ratey, =5.0x 10" g /mni < produces a more
damping solution than the null perfusion rate (oetithat the
ExGA-Stehfest method withd = 1.2 for w, =0.0g /mni s
provides a more clear solution without the high ib&tons
presented in the HHT scheme results). Next whenthieemal
relaxation time is assumed to bg = 20 s, the results become
very similar to that of the Pennes’ equatian € 0s) as shown
in Fig. 10(b). It is worth pointing out that sindhe wave
phenomenon does not appear whenr 20s, the ExGA-Stehfest
method with6 = 1 becomes stable.

X

Conclusions

In this paper, a hybrid time-Laplace domain techeipased on
numerical Green’s functions has been proposedhfersblution of
hyperbolic bioheat transfer models. As an additiadvantage of
the proposed formulation, the parabolic model daa be solved by

just setting 7, =0 without considering any further numerical

considerations. The novelty of the present workhis introduction

of the linear& method into the standard ExGA time-marchingct,j‘lculatiOn of numerical Green’s fun

scheme, establishing the so-called ExGA-lin8amethod. In the

ExGA-lineard method, the temperature response is firstly coagut
(k+6)At from the previous known solution at time Hybrid Time/Laplace Integration Method Based on Nutal Green's

at time t,,, =

t, = kAt, and then linearly interpolated to obtain the Soluat time

t"k+1_
by the Green’s matrices at timg, = At need to be computed,

herein, this is accomplished by the Stehfest Laplawersion
algorithm.

On the basis of the numerical examples, it cantbhied that
accurate results are produced by the ExGA-Stehliesar 6
method. Furthermore, the proposed formulation with1 can be
successfully employed not only to deal with shagmtfs, but also to
stabilize the numerical solution in the hyperbatiodel. Although
numerical oscillations near discontinuities canshppressed when

(k+1)At. As a result, only the Green’s functions represent

however, the paramete? =1 may be adopted as smooth solutions
are always expected. Thus, an effective unified emical technique
to solve both parabolic and hyperbolic bioheat fmois can be
developed through the proposed formulation.
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