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Comparison of machine learning techniques for 
predicting energy loads in buildings 

Uma comparação de técnicas de aprendizado de máquina 
para a previsão de cargas energéticas em edifícios 
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Leonardo Goliatt da Fonseca 
Priscila Vanessa Zabala Capriles Goliatt 
Afonso Celso de Castro Lemonge 

Abstract 
achine learning methods can be used to help design energy-efficient 

buildings reducing energy loads while maintaining the desired 

internal temperature. They work by estimating a response from a set 

of inputs such as building geometry, material properties, project 

costs, local weather conditions, as well as environmental impacts. These methods 

require a training phase which considers a dataset drawn from selected variables in 

the problem domain. This paper evaluates the performance of four machine 

learning methods to predict cooling and heating loads of residential buildings. The 

dataset consists of 768 samples with eight input variables and two output variables 

derived from building designs. The methods were selected based on exhaustive 

research with cross validation. Four statistical measures and one synthesis index 

were used for the performance assessment and comparison. The proposed 

framework resulted in accurate prediction models with optimized parameters that 

can potentially avoid modeling and testing various designs, helping to economize 

in the initial phase of the project. 

Keywords: Energy efficiency. Heating and cooling loads. Machine learning. 

Resumo 

Métodos de aprendizagem de máquina podem ser usados para auxiliar o projeto 
de edifícios energeticamente eficientes, reduzindo cargas de energia enquanto se 
mantém a temperatura interna desejada. Eles operam estimando uma resposta a 
partir de um conjunto de entradas tais como a geometria do edifício, propriedades 
do material, custos do projeto, condições do tempo no local e impacto ambiental. 
Esses métodos requerem uma fase de treinamento que considera uma base de 
dados construída a partir de variáveis selecionadas no domínio do problema. Este 
trabalho avalia o desempenho de quatro métodos de aprendizado de máquina na 
predição de cargas de resfriamento e aquecimento de edifícios residenciais. A 
base de dados do treinamento consiste de oito variáveis de entrada e duas 
variáveis de saída, todas derivadas de projetos de edifícios. Os métodos foram 
selecionados de acordo com uma pesquisa exaustiva e ajustados por uma 
estratégia com validação cruzada. Para a avaliação foram usadas quatro medidas 
estatísticas de desempenho e um índice de sintetização e resultados. Essa 
estratégia resultou em algoritmos com parâmetros otimizados e permitiu obter 
resultados competitivos com os apresentados na literatura. 

Palavras-chave: Eficiência energética. Cargas de aquecimento e resfriamento. Aprendizado 
de máquina. 
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Introduction 

The basic principle of building energy efficiency is 

to use less energy for operations including heating, 

cooling, lighting and other appliances, without 

affecting the health and comfort of its occupants. 

Improving the energy efficiency of functional 

buildings brings many environmental and economic 

benefits such as reduced greenhouse gas emissions 

and operational cost savings. In many developed 

and developing countries, energy efficiency has 

become the main way to meet a rising energy 

demand (FRIESS; RAKHSHAN, 2017).  

In order to reduce the energy demand growth and 

decrease the amount of energy used associated with 

buildings, it is critical to understand how energy is 

distributed throughout a building, and how building 

parameters contribute to energy consumption 

(MUSTAFARAJ et al., 2014). Simulation tools can 

provide a reliable framework for assessing energy 

distribution in buildings and can help designers to 

understand the importance of building and weather 

parameters. However, when considering the 

decision-making process during the project cycle, 

carrying out a set of simulations can lead to 

complex scenarios and may be time-consuming. In 

order to avoid these drawbacks, machine learning 

methods can be used for energy demand prediction. 

These methods require the shortest amount of time 

in order to model the entire building and they are 

becoming commonly used for preliminary 

estimations (MELO et al., 2016). 

Although building orientation and layout have been 

shown to be highly important in reducing building 

energy consumption in cold and hot climates, the 

design can be often constrained by the specific 

characteristics of the building planned and the size, 

shape, and orientation of the building plot. Energy-

efficient buildings with special designs such as 

orientation, insulation and windows are being 

appropriately adapted to withstand severe weather 

conditions (HOLOPAINEN, 2017). Natural 

ventilation (MARCONDES et al., 2010) and 

natural light (FONSECA; DIDONE; PEREIRA, 

2012) also play an important role in energy saving. 

Additionally, one can have buildings with walls 

composed by different materials (SPECHT et al., 

2010) and the consideration of daylight when 

evaluating buildings regarding energy performance 

(DIDONE; PEREIRA, 2010).  

In a general context, climatic conditions in 

residential buildings may be determined by using 

technologies such as air conditioners and heaters. 

However, using this equipment constantly can 

generate high energy consumption. An alternative 

to reduce the use of cooling and heating equipment, 

maintaining the desired indoor climate conditions, 

is to design energy-efficient buildings able to 

produce such conditions. In order to assess the 

energy efficiency of a building, its heating and 

cooling loads should be estimated and analysed 

based on physical characteristics defined during the 

design process. Moreover, information such as 

global location, the purpose of the building, 

occupation and activity level should be taken into 

consideration. Among the computational tools for 

this purpose are those that simulate scenarios which 

often produce accurate results. For instance, 

Mustafaraj et al. (2014) developed a 3D model 

related to building architecture, occupancy and 

heating, ventilation and air conditioning operations. 

Two calibration stages were considered and the 

final model identified monthly savings of energy 

between 20 and 27%. In the Brazilian context, 

simulation results indicated possible savings in 

electricity consumption of up to 26% for optimized 

designs (KRÜGER; MORI, 2012).  

Although helpful and interesting in the design cycle, 

such tools may require advanced knowledge of the 

user due to the multidisciplinary aspect. In addition, 

simulations may consume considerable financial 

and computational costs and results may vary 

depending on the software used. It should be 

mentioned that accurate cooling load (CL) and 

heating load (HL) estimations and correctly 

identifying parameters that significantly affect 

building energy demand are necessary to determine 

appropriate equipment specifications, install 

systems properly and optimize building designs.  

An alternative approach to tackle these drawbacks 

is to develop a predictive surrogate model that can 

accurately predict energy consumption based on a 

few common factors. If the predictive model 

accurately estimates the simulation model results, 

then this model could be used instead of the 

simulation software to estimate performance for 

different conditions while potentially requiring less 

information. Considering the context of energy 

performance in buildings, various efforts to build 

alternative surrogate predictive models can be 

identified in the literature. 

Using extensive parametric thermal simulations, 

Pessenlehner and Mahdavi (2003) examined the 

influence of morphological parameters that define 

residential building shapes for heating loads. Based 

on experiments carried out by Pessenlehner and 

Mahdavi (2003), Tsanas and Xifara (2012) 

provided a meticulous statistical analysis to gain 

important insight of the underlying properties of 

input and output variables. Using the same data 

collected by Pessenlehner and Mahdavi (2003), 

Cheng and Cao (2014) and Chou and Bui (2014) 
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implemented artificial intelligence techniques to 

predict the energy performance of buildings. 

Catalina, Virgone and Blanco (2008) developed a 

set of multiple regression models to predict the 

monthly heating demand for single-family 

residential sector in temperate climates. Jinhu et al. 

(2010) built a forecasting model combining 

Principal Component Analysis to extract the most 

important features and a weighted support vector 

regression model for cooling load prediction. 

Kwok, Yuen and Lee (2011) used an artificial 

neural network model was to simulate the total 

building cooling load of an office building in Hong 

Kong. Online building energy predictions with 

neural networks and genetic algorithms can also be 

used in some applications (YOKOYAMA; WAKUI; 

SATAKE, 2009). Other alternatives include data-

driven models (CANDANEDO; FELDHEIM; 

DERAMAIX, 2017), agent-based modeling 

(AZAR; NIKOLOPOULOU; PAPADOPOULOS, 

2016), graphical approaches (O’NEILL; O’NEILL, 

2016) and bio-inspired techniques such as genetic 

algorithms (BRE et al., 2016).  

Chou and Bui (2014) suggested further studies 

focusing on the optimization of parameters of the 

model to achieve improvements in their accuracy in 

predicting heating and cooling loads in buildings. 

Following their suggestion, the objective of this 

paper is to use four predictive machine learning 

techniques which implement a model selection 

procedure that automatically searches for the best 

model in a set of user-defined parameters to assess 

and evaluate the the performance of alternative 

building designs in the early stages of the design 

process. In addition, this optimized model can help 

architects to analyze the relative impact of 

significant parameters of interest while maintaining 

energy performance standard requirements. 

The remainder of this paper is organized as follows: 

the second section describes the data set, the 

machine learning methods, the model selection 

procedure and the performance measures used in 

this paper. The third section validates and analyses 

the performance of all models and compares the 

results of the simulation. In the same section, a 

discussion is conducted considering the 

performance of each method, their strengths and 

limitations. The last section presents the 

conclusions.  

Method 

Machine learning methods can be adopted to 

estimate \ response from a set of inputs. These 

methods require a training phase, called supervised 

training, which considers a dataset drawn from 

selected variables in the problem domain. The 

dataset used in the training phase should represent 

as much as possible the context of the problem in 

which the tool will be used. This choice may 

influence their accuracy considerably.  

Dataset 

The dataset used in this study is available in Tsanas 

and Xifara (2012). The data were obtained by the 

simulation of a set of buildings using a software 

called Ecotect. Ecotect is an environmental analysis 

tool compatible with building information modeling 

software, such as Autodesk Revit Architecture, and 

is used to perform a comprehensive preliminary 

building energy performance analysis. It includes a 

wide range of analysis functions with a highly 

visual and interactive display enabling analytical 

results to be presented directly in the context of the 

building model (YANG; HE; YE, 2014). The 

dataset consists of eight input variables and two 

output variables, shown in Table 1. A modular 

geometry system was derived based on an 

elementary cube (3.5 × 3.5 × 3.5m). In order to 

generate different building shapes, eighteen such 

elements were used according to Figure 1. A subset 

of twelve shapes with distinct relative compactness 

values (see Table 1) was selected for the simulations, 

as shown in Figure 2. 

Table 1 - Representation of the input and output variables  

Description Type of input/output Min. Max. Mean 

Relative Compactness (RC) Set 0.62 0.98 0.76 

Surface area Set 514.5 808.5 671.71 

Wall area Set 245 416.5 318.50 

Roof area Set 110.25 220.5 176.60 

Overall height Set 3.5 7 5.25 

Orientation Set 2 5 3.50 

Glazing area Set 0 0.4 0.23 

Glazing area distribution Set 0 5 2.81 

Heating Load (HL) Range 6.01 43.1 22.31 

Cooling Load (CL) Range 10.9 48.03 24.59 

Source: Tsanas and Xifara (2012). 
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Figure 1 - Generation of shapes based on eighteen cubical elements 

 
Source: Pessenlehner and Mahdavi (2003). 

Figure 2 - Relative Compactness coefficient variation 

 
Source: Chou and Bui (2014). 

The Relative Compactness (RC) indicator is used to 

show different building types and it is given by 

Equation 1: 

RC = 6V2/3 A-1                                              Eq. 1 

Where: 

V is the building volume; and 

A is the surface area of the building. 

The surface area was calculated as the total of the 

wall area, roof area and floor area. Figure 3 shows 

the details of the wall area, roof area, floor area and 

overall building height.  

Four major orientations were considered in the 

experiments: north, east, west and south. Three 

percentages of the glazing area to floor area ratio 

were 10%, 25% and 40%. Moreover, five different 

glazing distributions were simulated: 

(a) uniform: with 25% glazing for each face; 

(b) north: 55% for the north face and 15% for 

each of the other faces; 

(c) east: 55% for the east face and 15% for each 

of the other faces; 

(d) south: 55% for the south face and 15% for 

each of the other faces; and 

(e) west: 55% for the west face and 15% for each 

of the other faces. 

Additionally, no glazing areas are simulated in the 

experiment. Finally, all the buildings were rotated 

to face the four cardinal directions. Based on this 

simulation setup, the dataset comprises 12 × 3 × 5 × 

4 + 12 × 4 = 768 samples of buildings. Table 1 

provides the detailed input and output parameters in 

this study. 

The simulation assumes the buildings are in Athens, 

Greece and each block is occupied by seven people 

doing sedentary activities, totaling a mean 

consumption of 70W. The indoor settings of the 

blocks were defined as: clothing: 0.6 clo, humidity: 

60%, air speed: 0.30 m/s, lighting level: 300 lux 

(equivalent to five 9W LED lamps considering the 

lamp luminous efficacy as 80 lm/W and the given 

dimensions of the modular cube). The sensitive and 

latent internal heat gains were assumed as 5W/m² 

and 2 W/m², respectively. The air infiltration rate 

was 0.5 and the air change rate with wind sensitivity 

was 0.25 air charger per hour. Air change rate with 

wind sensitivity is an Ecotect parameter that 

modifies the air infiltration rate based on the current 

wind speed.  
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Figure 3 - Generic definition of building areas 

 
Source: Chou and Bui (2014). 

For the thermal properties, a mixed mode with 95% 

efficiency was used, a thermostat range of 19°-24° 

C, with 15-20 h of operation on weekdays and 10-

20 h at weekends. It was considered that all 

buildings were constructed with the same material, 

all of which had the lowest U-value. The lower the 

U-value is, the better the material is as a heat 

insulator. The characteristics used (U-values 

between brackets) were: walls (1.780 W/m2K), 

floor (0.860 W/m2K), roofs (0.500 W/m2K) and 

windows (2.260 W/m2K). Additional details of the 

simulation experiments are provided by Tsanas and 

Xifara (2012). 

Machine learning methods 

In this study, the algorithms were programmed in 

Python 2.7 programming language using the sciPy 

and numPy scientific computing libraries. The 

pandas package was used for data processing and 

analysis. The regression algorithms and cross 

validation approaches were implemented using the 

Scikit-learn machine learning library 

(PEDREGOSA et al., 2011) and the ffnet package 

(WOJCIECHOWSKI, 2011). The following 

paragraphs describe the machine learning methods 

used in this paper. 

Decision trees (DT) build classification or 

regression models in the form of a tree structure. 

They break down a dataset into smaller and smaller 

subsets while at the same time an associated 

decision tree is incrementally developed. The final 

result is a tree with decision and leaf nodes 

(HASTIE; TIBSHIRANI; FRIEDMAN, 2009). 

They take a set of attributes as input and return a 

predicted value for the respective input. The 

decision, associated with the decision node, is made 

by running a test sequence (DUMONT, 2009): each 

internal node of the tree corresponds to a test of the 

value of properties and the branches of this node 

identify possible test values. Each leaf node 

specifies the return value if the leaf is reached. In 

this method, the estimated parameter is the 

maximum depth of the tree.  

Support Vector Machines (SVM) 

(SHANMUGAMANI; SADIQUE; 

RAMAMOORTHY, 2015) are machine learning 

algorithms performing a linear combination of 

attributes by functions called kernel functions 

aimed to assign a class to a given sample. Different 

types of kernel functions can be used and different 

parameters can be varied according to the selected 

kernel. The SVM is commonly formulated as an 

optimization problem as follows (Equation 2: 

𝑚𝑖𝑛𝑤,𝑏,𝜉
1

2
(𝑤′𝑤 + 𝐶 ∑ 𝜉𝑖)                                Eq. 2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝜑(𝑧𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 

𝜉
𝑖

≥ 0, 𝑖 = 1,2, . . . ℎ 

Where: 

yi are the outputs; 

xi are the input samples; 

φ is used to transform the data to a high-

dimensional space; 

w represents the decision function coefficients; 

the constant C > 0 is the error separating 

hyperplane; 
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h is the number of support vectors; and 

ξ is used to penalize the objective function. 

The dot product φ’ (zi ) φ (zi ) is replaced by kernel 

K(zi, zj) that has some special properties. In this 

study, we used the linear kernel represented by K(zi, 

zj) = zizj and the radial basis kernel K(zi, zj) = exp 

(−γ||zi - zj ||), where γ is a parameter of the radial 

basis function. The performance of the above 

methods depends on the appropriate choice of 

parameter C for the linear kernel and γ and C for the 

RBF kernel. 

The Random Forest (RF) (HASTIE; TIBSHIRANI; 

FRIEDMAN, 2009) is an ensemble learning 

method for classification that operates by building 

k decision trees from the training set in k iterations. 

In each iteration, the training algorithm firstly 

randomly selects a set of samples from the training 

set. To reproduce a decision tree from this subset, 

the RF randomly chooses a subset of features as the 

candidate features for each node. Thus, each 

decision tree is built through the ensemble using 

random independent subsets of both features and 

samples. The prediction of a new sample class is 

performed as follows: each individual classifier 

votes and the most voted class is elected. The 

minimum number of samples in newly created 

leaves is the parameter of this method. 

The Multi-Layer Perceptron (MLP) (HAYKIN, 

2008; NISSEN, 2005) was used in various areas, 

performing pattern recognition functions, control 

and signal processing. This architecture has one or 

more hidden layers, which comprise computational 

neurons, also called hidden neurons. The activity of 

hidden neurons is involved between the external 

and output layers of the network. Including one or 

more hidden layers, the network is able to capture 

non-linear relationships between inputs and 

outputs. This algorithm uses a number of hidden 

layers and neurons, the training algorithm, the 

connectivity and the normalization flag as 

parameters. If the renormalization flag is set to true, 

then the data are renormalized. The number of 

hidden layers is represented as a list of values. For 

instance, the configuration [5,5] indicates 2 hidden 

layers of 5 neurons each. The algorithm addresses 

the following methods to optimize the weights: l-

bfgs refers to the Quasi-Newton approach, sgd 

refers to the Stochastic Gradient Descent Method, 

and tnc is the gradient information on the truncated 

Newton algorithm. The connectivity can be simply 

connected or fully connected. Figure 4 exemplifies 

the types of connectivity. 

Figure 4 - Connectivities for a 2-[4-4]-1 neural network which has two inputs, two hidden layers (4 
neurons in each) and one output 

 
Note: the scheme of the simply connected scheme is shown in (A), where the neurons are connected only to the neurons 
of the previous layer, and in (B) there is the fully connected scheme, where a neuron is connected to all its 
predecessors. 
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Grid Search with Cross validation 

In order to find the best predictive model and 

prevent overfitting, an approach based on the grid 

search and k-fold cross validation was 

implemented. It is well known that the suitable 

choice of parameter values of a machine learning 

method can cause a considerable impact on its 

accuracy. Furthermore, the optimal values for the 

parameters can vary according to the problem. Grid 

Search is a strategy for automatic and optimized 

parameter adjustments of the model. This technique 

builds a mesh from sets of predefined values for 

each parameter. For each possible combination of 

parameters, the predictive model is trained with 

some of the data, generating a set of outputs. The 

best parameter values are those that produced the 

best set of outputs. The number of configurations 

for the method is given by Equation 3: 

∏ 𝑁𝑘
𝑃
𝑘=1                                                             Eq. 3 

Where: 

P is the number of parameters; and 

𝑁𝑘is the number of values chosen for the k-th 

parameter (BERGSTRA; BENGIO, 2012). 

In the training step, the strategy known as k-Fold 

cross validation was adopted, which divides the 

data set into k sets. The model is trained on k-1 sets 

and validated with the remaining part. Training and 

testing steps are repeated k times alternating the 

training and the testing sets. Figure 5 illustrates the 

application of k-Fold cross validation. In this study, 

k = 10 was adopted.  

Performance evaluation 

Multiple evaluating criteria were used to compare 

the performance of prediction models. Given a data 

set composed by N observations, the performance 

measures the Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), Mean Absolute 

Percentage Error (MAPE) and Coefficient of 

Determination (R2), which are given by the 

following Equations (Equations 4-7): 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑧𝑖|                                         Eq. 4 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑧𝑖)

2                                 Eq. 5 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑

𝑦𝑖−𝑧𝑖

𝑦𝑖
                                          Eq. 6 

𝑅2 = 1 −
∑(𝑦𝑖−𝑧𝑖)2

∑(𝑦𝑖−𝑦𝑀)2                                           Eq. 7 

Where: 

yi is the expected value for the output variable (HL 

or CL) with the input xi; 

zi is the predicted value for the same input xi; and 

yM is the average of the predicted values of the 

output variable y. 

In order to obtain a comprehensive performance 

measure, the measures known as RMSE, MAE, 

MAPE and 1-R2 are combined into a Synthesis 

Index (SI), as follows (CHOU; BUI, 2014) 

(Equation 8). 

𝑆𝐼 =
1

𝑀
∑

𝑃𝑖−𝑃𝑚𝑖𝑛,𝑖

𝑃𝑚𝑎𝑥,𝑖−𝑃𝑚𝑖𝑛,𝑖

𝑀
𝑖=1                                    Eq. 8 

Where: 

M is the number of performance measures; and 

Pi is the performance measure.  

The SI range is 0-1 and an SI value close to 0 

indicates a highly accurate prediction model. 

Results and discussion 

Each machine learning method was trained and 

validated in 50 independent runs. Table 2 shows the 

set of parameters used as input for the grid search 

procedure, as well as the grid size. The machine 

learning methods appear in the first column: 

Decision Trees (DT), Multi-Layer Perceptron 

Neural Network (MLP), Random Forests (RF) and 

Support Vector Machines (SVM). The second 

column describes the parameter name for each 

method, while the third column shows the 

corresponding parameter settings. The last column 

shows the grid size, calculated as Equation (3). For 

example, the grid size for MLP is equal to 80: there 

are ten configurations for hidden layers, 4 distinct 

training algorithms and two connectivity schemes. 

Therefore, the grid size has 10 x 4 x 2 = 80 possible 

arrangements of parameters. Other parameters 

involved in the methods, not defined for this step, 

were kept with the default values as set in the 

implementations in the scikit-learn package 

(PEDREGOSA et al, 2011). 

Figure 6 illustrates the values of the four statistical 

measures averaged in 50 runs for the predicted 

heating and cooling loads. In each bar, the vertical 

black line indicates the standard deviation. For all 

machine learning methods implemented here, it can 

be observed that heating loads can be estimated 

more accurately than cooling loads. This conclusion 

is in agreement with other studies in the literature. 

Tsanas and Xifara (2012) conducted an extensive 

statistical analysis on the same dataset used in this 

paper. They found both heat and cooling loads are 

strongly positively correlated to Relative 

Compactness and overall height, and strongly 

negatively correlated with the surface area and roof 

area. The correlation coefficients and details of the 

statistical procedure can be found in Tsanas and 
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Xifara (2012). In their study, they concluded that 

heating loads are estimated with considerably 

greater accuracy than cooling loads because some 

variables interact more efficiently to provide an 

estimate of heating loads. 

Taking into consideration the heating loading 

predictions, it can be observed that all methods 

produced similar results for all the statistical 

measures. However, random forests produced the 

best values for all statistical measures. The good 

performance of random forests can be explained by 

the internal optimization problem that is solved 

during the training step, which internally accounts 

for redundant and interacting variables, leading to 

better prediction abilities. On the contrary, a similar 

behavior cannot be observed for cooling loading 

predictions. Clearly, multi-layer perceptron neural 

networks and support vector machines 

outperformed random forests and decision trees. 

The underlying relationships for cooling loads are 

quite complicated to be adequately captured by 

random forests and decision trees. In addition, as 

nonlinear estimators, MLP and SVM show more 

flexibility in their model parameters which lead to 

better predictions. 

Figure 5 - Illustration of training (green) and testing (blue) sets for k = 10 

 

Table 2 - Parameters and their values for applications of grid searches 

Method Parameter Name Parameter settings Grid Size 

DT Max depth 
[None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 

50] 
14 

MLP 

Number of hidden layers and neurons 
[5], [10], [20], [50], [100], [5, 5],  

[10, 10], [20, 20], [5, 5, 5], [10, 10, 10] 

80 Activation function [logistic] 

Training algorithm [tnc, l-bfgs, sgd, rprop] 

Connectivity simply connected, fully connected 

RF 

Number of trees [10, 20, 30] 

840 

Bootstrap [True, False] 

Max depth [None, 1, 2, 4, 8, 16, 32] 

Max features [auto, 1.0, 0.3, 0.1] 

Minimum sample leaf [1, 3, 5, 9, 17] 

SVM 

Max iterations 100000 

294 

𝐶 [1, 10, 100, 1000, 104, 105, 106] 

𝜎 [1, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6] 

Base function [rbf] 

𝜀 [10-1, 10-2, 10-3, 10-4, 10-5, 10-6] 
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Figure 6 - Barplots for the statistical measures for the heating load (HL in green) and cooling load (CL in 
blue) 

 
Note: the performance metrics are (A) Mean Absolute Error (MAE), (B) Coefficient of Determination (R2), (C) Root Mean 
Square Error (RMSE) and (D) Mean Absolute Percentage Error (MAPE). All the results are averaged on 50 runs. 

To compare the performance of the developed 

models in this paper we used the Synthesis Index 

(SI). Table 3 lists the summary of averaged 

statistical measures for the cooling load (CL) and 

heating load (HL) for each model. Random forests 

had the best results based on the SI values for the 

heating load, while the multi-layer perceptron 

neural network model produced the best SI for 

cooling loads. Particularly, RF performs better for 

heating loads, as can be seen when comparing the 

SI values produced by RF and the remaining 

predictors. The conclusions obtained when 

analyzing the cooling loads are different: the 

support vector machine and multi-layer perceptron 

neural network show similar statistical measures. 

However, the neural network performed slightly 

better in all the measures. The previous analyses 

suggest two different machine learning models to 

predict heating and cooling loads. Interestingly, 

MLP and SVM, which produced the best statistical 

measures for cooling loads, presented the worst 

performance for heating loads.  

The Synthesis Index (SI) values close to zero 

indicate a highly accurate prediction model. The 

performance metrics presented in the table are the 

Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), Root Mean Square Error 

(RMSE) and Coefficient of Determination (R2). 

The machine learning models applied are Decision 

Trees (DT), Multi-Layer Perceptron Neural 

Network (MLP), Random Forests (RF) and Support 

Vector Machines (SVM).  

Table 4 shows the average real time to perform the 

grid search and build the models with optimized 

parameters. The number of folds and the grid size 

are also shown. The computing time depends on the 

computational burden of the training algorithm of 

each model, the number of folds and the parameter 

grid size. Details of the implementation of this 

procedure can be found in Buitinck et al. (2013). 

Computer specifications are given as follows: CPU 

AMD Opteron Processor 6272 (64 cores of 2.1GHz 

and cache memory of 2MB), RAM of 250GB and 

operational system Linux Ubuntu 14.04.4 LTS. The 
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computation time data shows that the whole 

proposed framework can build optimized machine 

learning models within minutes. Once constructed, 

each optimized model performs the predictions 

quickly, promptly allowing for analysis and 

parameter testing in the design cycles. 

Tables 5 and 6 present the statistical measures for 

the best models in this paper for both cooling and 

heating loads. In order to provide a comparison with 

other models in the literature, the tables also show 

the results obtained from other studies. Tsanas and 

Xifara (2012) implemented random forests, while 

Cheng and Cao (2014) used developed multivariate 

adaptive regression splines. Chou and Bui (2014) 

implemented an ensemble model, a linear 

combination of two or more models to enhance 

performance. The results presented by Castelli et al. 

(2015) were obtained by genetic programming, an 

automated learning of computer programs using a 

process inspired by biological evolution. As can be 

seen in Table 4 for the heating load, the best model 

in this paper shows a better average performance for 

RMSE and obtained competitive results for the 

Mean Absolute Error and the Coefficient of 

Determination. For cooling loads, the Multi-Layer 

Perceptron model reaches the best average 

performance for all statistical measures. One of the 

most important features of neural networks is their 

flexibility and ability to learn highly nonlinear 

relationships based on the data. The search for 

optimized parameters can improve such features, as 

well as increasing the modeling flexibility.   

Table 3 - Averaged statistical measures for cooling loads (CL) and heating loads (HL) 

Output Model MAE MAPE RMSE R2 SIa 

HL 

DT 0.347 1.497 0.267 0.997 0.420 

MLP 0.315 1.561 0.420 0.996 0.602 

RF 0.315 1.350 0.223 0.998 0.000 

SVM 0.349 1.871 0.271 0.997 0.622 

CL 

DT 1.175 4.055 3.693 0.959 1.000 

MLP 0.565 2.342 0.837 0.991 0.000 

RF 0.941 3.539 2.118 0.977 0.553 

SVM 0.591 2.649 0.868 0.990 0.061 

Table 4 - Average computing time to perform the grid search and build the models with optimized 
parameters 

Model 
Number 

of folds 

Grid 

size 

Average Time (s) 

HL Model 

DT 10 14 1.6 DT 

RF 10 840 70.0 RF 

MLP 10 80 1448.5 MLP 

SVM 10 294 524.3 SVM 

Note: the machine learning models tested for heating (HL) and cooling loads (CL) are Decision Trees (DT), Multi-Layer 
Perceptron Neural Network (MLP), Random Forests (RF) and Support Vector Machines (SVM). The real time (in seconds) is 
averaged on 10 runs. 

Table 5 - Heating load – comparison between the results of this study and those in the literature used 
as a reference 

Reference Model MAE (kW) RMSE (kW) MAPE (%) R2 

Tsanas and Xifara (2012) Random forests 0.510 – 2.180 – 

Cheng and Cao (2014) Ensemble model 0.340 0.460 – 0.998 

Chou and Bui (2014) Ensemble model 0.236 0.346 1.132 0.999 

Castelli et al. (2015) Genetic programming 0.380 – 0.430 – 

This paper Random forests 0.315 0.223 1.350 0.998 

Note: the best results are highlighted in bold. The performance metrics presented in the table are the Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and Coefficient of Determination 
(R2).  
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Table 6 - Cooling load – comparison between the results of our study and those in the literature used as 
a reference 

Reference Model MAE (kW) RMSE (kW) MAPE (%) R2 

Tsanas and Xifara (2012) Random forests 1.420 – 4.620 – 

Cheng and Cao (2014) Ensemble model 0.680 0.970 – 0.990 

Chou and Bui (2014) Ensemble model 0.890 1.566 3.455 0.986 

Castelli et al. (2015) Genetic programming 0.970 – 3.400 – 

This paper Neural network 0.565 0.837 2.342 0.991 

Note: the best results are highlighted in bold. The performance metrics presented in the table are the Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and Coefficient of Determination 
(R2).

Although the predictive models proposed here and 

those found in the literature produced accurate 

results, they should be used carefully. It should be 

mentioned that they are only applicable to the 

twelve specified building types considering the 

simulated experiment setup. Besides, even in 

computer simulations, uncertainties in thermal and 

physical properties of materials can influence 

thermal performance (SILVA; ALMEIDA; GHISI, 

2017) and may be considered. Comprehensive tests 

using real data are necessary to assess the 

performance of the methods in real world situations, 

leading to the development of new and improved 

models. Some authors using data measured from a 

wireless sensor network have identified that 

atmospheric pressure, exterior air temperature and 

wind speed are important parameters to predict 

energy loads (CANDANEDO; FELDHEIM; 

DERAMAIX, 2017). 

Conclusions 

This paper evaluated the application of four 

machine learning methods to predict energy 

efficiency in residential buildings: decision trees, 

random forests, multi-layer perceptron neural 

networks and support vector machines. Their 

parameters were adjusted through the grid search 

and trained with cross validation. The dataset 

consists of a data set of 768 simulated buildings.  

From the results obtained, random forests proved to 

be the best option for predicting heating loads while 

multi-layer perceptron neural networks produced 

the most accurate results for cooling loads. Support 

vector machines obtained accurate predictions for 

cooling loads, but with a slightly lower 

performance. After comparing them with the 

machine learning methods found in the literature, 

the results obtained in this paper show that the 

search in the parameters can generate accurate 

models, and are an alternative for early prediction 

of building cooling and heating loads. However, the 

machine learning methods developed here, even 

though accurate, are only applicable to the twelve 

specified building types in the simulated dataset. 

The models with optimized parameters developed 

in this study are able to evaluate different sets of 

parameters, resulting in simulation settings that can 

potentially avoid modeling and testing various 

prototypes, helping to save resources in the initial 

phase of the design. Expecting to improve the 

results presented here, other machine learning 

methods can be implemented in further research. In 

addition, the grid search strategy can be replaced by 

an optimization evolutionary algorithm to set the 

parameters of the machine learning methods. 
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