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Experimental and 
numerical evaluation of 
viscoelastic sandwich beams
Abstract

Viscoelastic materials can dissipate a large amount of energy when subjected to 
cyclic shear deformations, but they have low bearing capacity. Therefore they are often 
employed as a damping layer in sandwich structures. These sandwich structures present 
a high damping ratio and simple application.

In order to design sandwich structures, many aspects ranging from computer mod-
eling to laboratory testing should be considered. In this study, a test set of experiments 
were performed and results are compared with a numerical GHM (Golla, Hughes and 
Mc Tavish method) based model, in order to establish a method to support viscoelastic 
sandwich beam design. 

In this way, starting from the dynamic properties of a viscoelastic material, a nu-
merical model is used to evaluate the behavior of these structures. Comparisons with 
uncontrolled structures are also presented, showing the dissipative characteristics of this 
passive control.
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1. Introduction

Aiming for the reduction of struc-
tural vibrations, several techniques were 
developed to increase structural damp-
ing. Among these techniques, the passive 
control with viscoelastic materials has 
shown reasonable efficiency. These ma-
terials have low bearing properties with a 
high dissipative capacity when subjected 
to cyclic deformations. That is the main 
reason to apply viscoelastic materials in 
sandwich layers with stiff elastic materi-
als (Felippe et al. 2013).

In this way, in order to effectively 
reduce structural vibrations using vis-
coelastic materials, it is important to 
understand the dynamic behavior of the 
structure and the viscoelastic material 
(VEM) used. This type of control system 
has experienced a growth in practical 
applications due to some benefits related 
to cost-effectiveness and a high level of 
dynamic damping (Battista et al. 2010, 
Kim et al. 2006, Moliner et al. 2012, 
Saidi et al. 2011).

Within this context, this paper will 
discuss the computational modeling of 
viscoelastic materials and their use for 
reducing vibrations in structures, work-
ing as a passive control mechanism in 
sandwich layers. Aiming to numerically 
simulate the behavior of viscoelastic 
sandwich beams, an experimental pro-
gram with rectangular cross-section 
beams was conducted and the results 
compared with those obtained with a 
computational model. In order to build 
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the computational models, a viscoelastic 
finite element (CST) using the GHM 

method (Golla, Hughes and Mc Tavish 
method) was developed.

2. The GHM method for viscoelastic materials modeling

The stress-strain relation on Laplace’s domain as mentioned by Golla, Hughes and Mc Tavish (1985) may be written as:

s (s) = [E
0
 + h (s) ] e (s) (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8a)

(8b)

where s is the Laplace operator, s(s) and e(s) are, 
respectively, the stress and strain on Laplace’s 

domain, E0 is the elastic fraction of complex 
modulus and h(s) is the relaxation function. 

Function h(s) can be written using Biot's series 
with four terms (or two GHM terms):
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where N is the number of terms, αi, 
βi and δi are materials constants and  

(αi, βi, δi) ≥ 0.
Starting from the equation of mo-

tion in the Laplace domain:

{ Ms2 + K l } q (s) = f l (s)

K l = [E
0
 + h (s)]k

v

where M, K l and f l(s) are respectively the mass, stiffness and external loading in the Laplace domain, where:

where: K
v
 is the rigidity fraction associ-

ated with geometrical characteristics of 
the model. The GHM model defines the 
equation of motion in the time domain as:
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where:

and zi is the auxiliary variable introduced 
into the problem, called dissipation vari-

able.
Generalizing Eq. (5) for n degrees of 

freedom, Eqs. (6-7) may be written as:
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where:

Kv = T T ΛT,

and Λ is a diagonal matrix consisting of the 
non-zero eigen-values of the stiffness matrix 
normalized with respect to the elastic modu-
lus; T is the matrix of vectors corresponding 
to the non-zero eigen-values of the matrix 

(1/E)Kelastic; R = TΛ1/2 and zi = R zi.
As shown in Eqs. (2-8) the number of 

dissipative degrees of freedom associated 
with viscoelastic elements depends on the 
number of terms used in the relaxation func-

tion and the number of rigid body motions 
(Barbosa 2000). It should be noted that the 
greater the number of terms used to write 
the relaxation function, the  more accurate 
the model will be.

(9)

3. Experimental program

A set of tests was performed with 
viscoelastic sandwich cantilever beams. 
The beams were divided into four groups 
in accordance with their layer configura-
tion: a VS1 beam, with two elastic layers 
(base beam and restraining layer, both 

clamped) and one viscoelastic layer; a 
VS1c beam, with two elastic layers (base 
beam clamped and free restraining layer) 
and one viscoelastic layer; a VS2 beam, 
with three elastic layers (one base beam 
and two restraining layers, all clamped) 

and two viscoelastic layers; and a VS2c 
beam, with three elastic layers (one base 
beam clamped and two free restraining 
layers) and two viscoelastic layers. The 
layer configuration of the beams can be 
seen in Fig. 1.

(a)

(b)

(c)

(d)

Figure 1
Longitudinal section 

of the analyzed beams.

These beams have a rectangular cross 
section and 1140 mm length, working as 
a base structure (with 16.1mm height) and 
onto this structure, viscoelastic layers (with 
2.0mm height) and elastic constraining lay-
ers (with 3,17mm height) were mounted, as 

shown in Fig. 1. Aluminum was the mate-
rial used for the elastic layers and VHB 
4955 was used as the viscoelastic material.

These beams were stimulated under 
the action of a hammer impact at 15 cm 
from the cantilever and at 15, 20 and 25 cm 

from the cantilever, transversal displace-
ments were observed during the period. In 
Fig. 2, one can see how the beams were in-
strumented with LVDT sensors fabricated 
by Balluff, which could register displace-
ments without touching the structure.

Figure 2
Viscoelastic sandwich 

beam ready to be tested.

Two elastic beams, A and B, were 
tested and then the sandwich beam configu-

ration was mounted on these elastic beams, 
making a total of two specimens. The natural 

frequencies and damping ratios of the respec-
tive beams A and B are shown in Table 1.

Vibration mode

Beam A Beam B

Natural frequency 
(Hz)

Damping ratio
(%)

Natural frequency 
(Hz)

Damping ratio
(%)

1 10.25±0.00 0.05±0.00 10.24±0.00 0.05±0.00

2 63.38±0.00 0.03±0.00 63.70±0.00 0.04±0.00

3 179.00±0.00 0.06±0.00 179.26±0.00 0.05±0.00

Table 1
Natural frequencies 

and damping ratios of beams A and B.
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For the specimens VS1, VS1c, VS2 
and VS2c the natural frequencies and their 

damping ratios are listed in Tables 2-5, 
respectively.

Vibration mode

Beam A Beam B

Natural frequency 
(Hz)

Damping ratio 
(%)

Natural frequency 
(Hz)

Damping ratio 
(%)

1 11.31±0.02 4.98±0.11 11.03±0.02 4.44±0.01

2 63.37±0.17 4.90±0.19 61.76±0.14 4.32±0.05

3 175.05±0.12 4.39±0.01 168.08±0.23 3.28±0.06

Table 2
Natural frequencies and 
damping ratios of VS1 specimens.

Table 3
Natural frequencies and
damping ratios of VS1c specimens.

Vibration mode

Beam A Beam B

Natural frequency 
(Hz)

Damping ratio 
(%)

Natural frequency 
(Hz) 

Damping ratio 
(%)

1 9.82±0.00 2.74±0.01 8.41±0.01 2.23±0.02

2 63.70±0.04 4.80±0.10 55.09±0.06 3.48±0.06

3 174.05±0.35 4.44±0.04 145.48±0.16 3.86±0.07

Vibration mode Beam A Beam B

Natural frequency 
(Hz)

Damping ratio 
(%)

Natural frequency 
(Hz)

Damping ratio 
(%) 

1 - - 12.34±0.05 7.92±0.11

2 - - 64.79±0.37 8.65±0.20

3 - - 173.29±0.90 6.17±0.49

Table 4
Natural frequencies and
damping ratios of VS2 specimens.

Table 5
Natural frequencies and
 damping ratios of VS2c specimens.

Vibration mode

Beam A Beam B

Natural frequency 
(Hz)

Damping ratio 
(%)

Natural frequency 
(Hz) 

Damping ratio 
(%)

1 8.26±0.00 4.75±0.31 9.82±0.01 5.14±0.03

2 56.81±0.22 6.67±0.02 6.67±0.31 8.60±0.20

3 146.04±1.44 4.73±0.56 4.73±0.41 5.90±0.97

3.1 GHM Model’s parameters
There are several methodologies 

for characterizing the Complex Modu-
lus of viscoelastic materials: ASTM 
Standard Method (ASTM 1993), Direct 
Method (Faisca 1998) and Indirect 
Method (Masterson and Miles 1995). 

These methods basically register the 
temporal responses at a given tempera-
ture, when a specimen is forced into 
shear or axial deformation.

After the values of Complex Mod-
ulus are experimentally determined, 

one can adjust the curves of the real 
part of the Complex Modulus and loss 
factor for the points obtained experi-
mentally. In the case of the formulation 
GHM, the complex shear modulus is 
given by:
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(10)

(11)

and these functions are used to deter-
mine the GHM parameters.

Here it was used the Direct Method, 
for frequencies between 0 and 200 Hz. Us-

ing data from the experiments, the GHM 
parameters could be determined using the 
Nonlinear Least Squares Method (Cole-
man and Li 1994, Coleman and Li 1996). 

These fitted values are shown in Table 7. 
Figure 3 shows two graphics comparing 
the experimental values and the adjusted 
curves of G′(ω) and η(ω).
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Parameter
Value

Term 1 Term 2

E0 1898260.0 Pa

α 763774.0 MPa 6873966.0 MPa

β 2.9178×107 s-1 1.2146×107 s-1

δ 3.2408×108 s-2 4.0554×109 s-2

Table 7
GHM parameters 

adjusted to the viscoelastic material.

Figure 3
Experimental values 

and fitted curves of G′(ω) and η(ω).

(a) (b)

4. Numerical evaluation

Using equations 6-7, it is pos-
sible to achieve viscoelastic elements 
matrices for the linear triangular  
Finite Element.

The beams were simulated under 
the action of a hammer impact at 15 
cm from the cantilever and, at the same 
point, transversal displacement was 

observed along the time. The domain 
of the structure was discretized with 
linear triangular element meshes like 
the one shown in Figure 4.

Figure 4
Structural Finite Element discretization.

In order to establish the models, considered were the mechanical properties listed in Table 8.

Mechanical property Elastic layer Viscoelastic layer

Density (kg/m ) 8794.0 795.0

Poisson’s coefficient 0.30 0.49

Elastic Modulus (GPa) 109.6 -

Table 8
Mechanical properties 

adopted for sandwich structure.

With the model, meshes and me-
chanical properties presented, the time 
response of beams could be obtained. In 
order to obtain the natural frequencies, 

a spectral response was constructed and 
the time response signal filtered around 
the first three natural frequencies identi-
fied; then, to obtain the damping ratios, 

the obtained filtered signal was used. 
The relationship between the numerical 
and experimental data can be seen in 
Figures 5-8.
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Figure 5
Numerical and experimental frequencies 
and damping ratios identified for VS1 beam.

Figure 6
Numerical and experimental frequencies and 
damping ratios identified for VS1c beam.

Figure 7
Numerical and experimental frequencies 
and damping ratios identified for VS2 beam.

Figure 8
Numerical and experimental frequencies 
and damping ratios identified for VS2c beam.

As one can see, the natural frequen-
cies predicted with the numerical model 
show good agreement with those identi-

fied experimentally and one can state that 
the GHM model used provided consistent 
results in terms of the damping ratio and 

natural frequencies.

(a) (b)

(a) (b)

(a) (b)

(a) (b)

5. Conclusions

This study evaluated some beams 
with and without sandwich viscoelastic 
damping treatment. It has been shown 

that this type of passive control signifi-
cantly improves the damping ratios of an 
elastic base beam, from 44.6× (for VS1c 

layout) to 173× (for VS2c layout), confirm-
ing the effectiveness of this treatment. As 
can be seen, beams with clamped restrain-
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ing layers presented a higher damping 
ratio than those where this layer was not 
restrained. This behavior was expected 
since, when these layers are constrained, 
larger shear deformations are imposed 
on VEM. Consequently, the material 
dissipates more energy.

Also evaluated was a computational 
model for viscoelastic materials acting as 
structural vibration dampers: the GHM 
Method. Analyzing the obtained responses 
for the cantilever beams, one can observe 

that despite the good correlation between 
the fitted curves and the experimental data, 
the damping factor obtained through the 
numerical model was, in general, underes-
timated. Notwithstanding, there was good 
agreement between the natural frequencies 
obtained with the model and the experi-
mental values. Obviously these differences 
cannot be attributed only to curve fitting. 
Other factors such as: the methodology 
used on modal identification; 2) Dispersion 
of experimental results; and 3) The Finite 

Element discretization, also play a signifi-
cant influence on the numerical results.

In previous studies, it was possible 
to observe the influence of the curve fit 
over the numerical results. Apparently, 
this model tends to underestimate the 
damping ratios.

Therefore it is considered that since 
the GHM model provided results close 
to the experimental data and in favor of 
safety, this model can be a useful tool to 
project or simulate sandwich beams.
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