
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Helena de Almeida Maia

A Mediator for Multiple Trackers in Long-term

Scenario

Juiz de Fora

2016

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Helena de Almeida Maia

A Mediator for Multiple Trackers in Long-term

Scenario

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação,
do Instituto de Ciências Exatas da
Universidade Federal de Juiz de Fora como
requisito parcial para obtenção do t́ıtulo de
Mestre em Ciência da Computação.

Orientador: Marcelo Bernardes Vieira

Juiz de Fora

2016

Ficha catalográfica elaborada através do programa de geração
automática da Biblioteca Universitária da UFJF,

com os dados fornecidos pelo(a) autor(a)

Maia, Helena de Almeida.
 A Mediator for Multiple Trackers in Long-term Scenario /
Helena de Almeida Maia. -- 2016.
 66 f. : il.

 Orientador: Marcelo Bernardes Vieira
 Dissertação (mestrado acadêmico) - Universidade Federal de
Juiz de Fora, Instituto de Ciências Exatas. Programa de Pós-
Graduação em Ciência da Computação, 2016.

 1. Template tracking. 2. Tracking-Learning-Detection. 3.
Semisupervised learning. I. Vieira, Marcelo Bernardes,
orient. II. Título.

Helena de Almeida Maia

A Mediator for Multiple Trackers in Long-term Scenario

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação,
do Instituto de Ciências Exatas da
Universidade Federal de Juiz de Fora como
requisito parcial para obtenção do t́ıtulo de
Mestre em Ciência da Computação.

Aprovada em 18 de Março de 2016.

BANCA EXAMINADORA

Prof. D.Sc. Marcelo Bernardes Vieira - Orientador
Universidade Federal de Juiz de Fora

Prof. D.Sc. Rodrigo Luis de Souza da Silva
Universidade Federal de Juiz de Fora

Prof. D.Sc. Hélio Pedrini
Universidade Estadual de Campinas

À minha famı́lia.

Aos meus amigos.

AGRADECIMENTOS

Agradeço aos meus pais pelo amor e pelo constante incentivo aos estudos e as minhas

irmãs por todo o apoio. Ao Gabriel pela paciência e por motivar a persistir durante esta

etapa.

À todos os amigos da UFJF, da graduação e do GCG, que tornaram esse peŕıodo

mais agradável e auxiliaram com revisões e ideias. Aos amigos de Campinas que, mesmo

surgindo no final do mestrado, foram importantes por diversos motivos.

Aos professores do DCC que contribúıram para a minha formação. Em especial, ao

professor Marcelo Bernardes pela orientação. Ao professor William Schwartz, da UFMG,

por suas participações na contextualização e escolha do tema.

Finalmente, agradeço à CAPES e UFJF pelo apoio financeiro, sem o qual esse trabalho

não seria posśıvel e a todos que direta ou indiretamente fizeram parte da minha formação.

”If knowledge can create

problems, it is not through

ignorance that we can solve

them.” Isaac Asimov

RESUMO

Nos últimos anos, o rastreador TLD (Tracking-Learning-Detection) se destacou por

combinar um método de rastreamento através do movimento aparente e um método de

detecção para o problema de rastreamento de objetos em v́ıdeos. O detector identifica o

objeto pelas aparências supostamente confirmadas. O rastreador insere novas aparências

no modelo do detector estimando o movimento aparente. A integração das duas respostas

é realizada através da mesma métrica de similaridade utilizada pelo detector que pode

levar a uma decisão enviesada.

Neste trabalho, é proposto um framework para métodos baseados em múltiplos ras-

treadores onde o componente responsável pela integração das respostas é independente

dos rastreadores. Este componente é denominado mediador. Seguindo este framework,

um novo método é proposto para integrar o rastreador por movimento e o detector do ras-

treador TLD pela combinação das suas estimativas. Os resultados mostram que, quando

a integração é independente das métricas de ambos os rastreadores, a performance é me-

lhorada para objetos com significativas variações de aparência durante o v́ıdeo.

Palavras-chave: Rastreamento por template. Tracking-Learning-Detection.

Aprendizado semisupervisionado.

ABSTRACT

On the problem of tracking objects in videos, a recent and distinguished approach

combining tracking and detection methods is the TLD (Tracking-Learning-Detection)

framework. The detector identifies the object by its supposedly confirmed appearances.

The tracker inserts new appearances into the model using apparent motion. Their out-

comes are integrated by using the same similarity metric of the detector which, in our

point of view, leads to biased results.

In our work, we propose a framework for generic multitracker methods where the

component responsible for the integration is independent from the trackers. We call this

component as mediator. Using this framework, we propose a new method for integrating

the motion tracker and detector from TLD by combining their estimations. Our results

show that when the integration is independent of both tracker/detector metrics, the overall

tracking is improved for objects with high appearance variations throughout the video.

Keywords: Template tracking. Tracking-Learning-Detection. Semisupervised

learning.

LIST OF FIGURES

2.1 Scheme of LBP value computing . 23

2.2 FB error . 29

3.1 Motion tracker adaptability depicted in David sequence 34

3.2 Example of drift failure in Car sequence . 35

3.3 Example of object recovering after an occlusion in Car sequence 35

4.1 General framework . 40

4.2 Overview of our method . 41

5.1 TLD sequences . 46

5.2 ALOV300++ examples . 48

5.3 Overlap value for two bounding boxes. 48

5.4 Similarity values for David ground truth . 50

5.5 First frame of David sequence. 51

5.6 Similarity values for Pedestrian3 ground truth 51

5.7 Similarity values for Car ground truth . 51

5.8 F-measure by sequence and variation. 52

5.9 Example of incorrect tracker re-initialization in David sequence using os-pv . . 53

5.10 Comparison between os-ov and ps-pv perfomances for a given frame in Car-

chase sequence. 55

5.11 Comparison between os-ov (implemented TLD) and ps-pv (our proposal) in

ALOV300++ dataset using F-measure . 57

5.12 Survival curves for both os-ov and ps-pv variations in ALOV300++ dataset

using f-measure . 57

5.13 Comparison between our proposed method ps-pv and the state-of-the-art Struck 60

5.14 Survival curves for both methods in ALOV300++ dataset using f-measure . . 60

LIST OF TABLES

3.1 Summary of the two main trends for object tracking. 36

5.1 TLD dataset (KALAL et al., 2012). 47

5.2 Comparison among overall performance of the six variations. 54

5.3 Comparison among different model similarities when collecting samples for the

selector . 54

5.4 Comparison between os-ov (implemented TLD) and ps-pv (our proposal) in

TLD dataset . 56

5.5 Comparison between implemented TLD (os-ov), demonstration version (Demo)

and published results (TLD) in TLD dataset 58

5.6 Comparison between published results (TLD) and our proposal ps-pv in TLD

dataset . 58

5.7 Comparison between ps-pv (our proposal) and ALIEN tracker (state-of-the-art).

Cells on bold represent the highest f-measure. 59

LIST OF SYMBOLS

f Continuous function f : Rn → Rm.

f Discrete function f : Zn → Zm.

A Set.

|A| Set size.

~p Point ~p = (x1, · · · , xn).

~v Vector ~v = (v1, · · · , vn).

~bb Bounding box coordinates ~bb = (i1, j1, i2, j2) ∈ Z4, with i1 < i2 and j1 < j2.

bac The largest integer b such that b ≤ a.

‖ ~v ‖ L2 norm for the vector ~v defined as ‖ ~v ‖=
√∑

v2i

‖ ~v ‖1 L1 norm for the vector ~v defined as ‖ ~v ‖1=
∑
|vi|

〈~v, ~u〉 Inner product between ~v and ~u defined as 〈~v, ~u〉 =‖ ~v ‖‖ ~u ‖ cos θ =
∑
viui.

LIST OF ACRONYMS

2D Two-dimensional

3D Three-dimensional

ALIEN Appearance Learning In Evidential Nuisance

ALOV Amsterdam Library of Ordinary Videos

LBP Local Binary Pattern

MTA Multihypothesis Trajectory Analysis

NCC Normalized cross-correlation

NN Nearest neighbor

OpenCV Open Source Computer Vision Library

SIFT Scale Invariant Feature Transform

SST Structural Sparse Tracking

SVM Support Vector Machine

TLD Tracking-Learning-Detection

VOT Visual Object Tracking

CONTENTS

1 INTRODUCTION . 14

1.1 PROBLEM DEFINITION . 16

1.2 OBJECTIVES . 17

1.3 METHODOLOGY . 17

1.4 PRIOR DISCUSSIONS . 18

1.5 OUTLINE . 19

2 FUNDAMENTALS . 21

2.1 HISTOGRAMS . 21

2.2 SIFT AND OCCLUSION DETECTION . 25

2.3 TLD FRAMEWORK . 26

2.3.1 Median flow tracker . 26

2.3.2 Cascaded detector and P-N learning . 30

2.3.3 Selection and validation . 32

3 RELATED WORKS. 34

3.1 TRACKERS BY MATCHING . 36

3.2 DISCRIMINATIVE TRACKERS . 38

4 PROPOSED METHOD . 40

4.1 METHOD OVERVIEW . 41

4.1.1 Proposed selector . 42

4.1.2 Proposed validator . 44

5 EXPERIMENTAL RESULTS . 46

5.1 DATASETS . 46

5.1.1 TLD dataset . 46

5.1.2 ALOV300++ dataset . 47

5.2 EVALUATION PROTOCOL - TRAJECTORY QUALITY 47

5.3 RESULTS . 49

5.3.1 Selector generality power . 50

5.3.2 Component replacement . 52

5.3.3 Selector retraining . 53

5.3.4 os-ov × ps-pv - detailed results . 55

5.3.5 TLD - published results . 56

5.3.6 Literature comparisons . 59

6 CONCLUSION . 61

REFERENCES . 63

14

1 INTRODUCTION

The central goal of Computer Vision researches is to develop in computers the ability to

perceive the environment. Environment perception in human beings is accomplished by

extracting cues from sensory inputs. Similarly, Computer Vision researches seek to train

computers for extracting and interpreting cues from input signals. With this goal in mind,

here we address the problem of Visual Object Tracking (VOT). It consists of estimating

object position throughout time using visual cues. The input signal in VOT is a sequence

of frames, or a video, and visual cues may be color, depth, apparent motion, among others.

The main issue of this problem is how to describe the object and its movement.

Over the past years, we have seen a growing interest in VOT researches due to their

diversity of potential applications. Some applications are listed below:

� Automated surveillance: Automated surveillance systems use images from security

cameras to detect unusual activities and to prevent accidents or crimes. One of

those systems was proposed by Shah et al. (2007), the Knight. By using tracking,

Knight is able to follow the object and describe its activity. Since tracking is one

step of a major process, it requires high accuracy and low computational cost.

� Augmented reality: It consists of artificially producing new objects over real objects.

Sometimes, it requires not only the position, but also the pose of the real object, as

the one proposed by Comport et al. (2006).

Other potential applications include human action recognition and human-computer

interfaces. The method proposed here is more suitable for applications that do not require

object pose.

A common challenge in VOT is the change in the object appearance during the video,

caused by illumination variations, pose change, among others. Thus, a good tracker should

be trained to find these variety of appearances or adapt to them at runtime. The tracked

object may also be covered by other elements, or even be out of the scene. So, the system

should be able to recover the object after an occlusion. Recently, we have also seen a

growing concern in proposing methods that track farther, i.e., in long sequences. The

reason is that the aforementioned situations are more frequent in this scenario.

15

There is a large variety of trackers in the literature mainly differing in the object

modeling and how the trajectories are obtained. Some examples of object representation

are articulated models, polygon meshes and appearance examples via images (templates).

The first two models are more common when we also want to estimate object pose which is

not the case of this work. Here, we focus on the template tracking problem which generally

has two approaches to obtain the object trajectory: tracking by motion model (LUCAS;

KANADE, 1981; SHI; TOMASI, 1994; MATTHEWS et al., 2004; KALAL et al., 2010b)

and by detection (OZUYSAL et al., 2007; PERNICI; BIMBO, 2013).

Tracking by motion model is based on motion estimation methods, mainly optical

flow. It consists of optimized searches replacing the template at short intervals. Due to

this updating process, the tracker is capable of adapting to new object appearances, but

retaining only one template at a time. This becomes an issue when new appearances

are not related to the original sample, caused by either gradual or abrupt insertion of

background in the template. The error accumulation during tracking is known as the

drift problem, which might cause the tracker to permanently lose the appearance of the

original object, requiring re-initialization.

In tracking by detection, the object trajectory is obtained through independent detec-

tions at each frame. The detector is a classifier that examines the whole frame and decides

about object presence or absence in each region. By performing independent detections,

it can recover the object after an occlusion using the known appearances. Generally, the

detector is trained offline and requires a large set of samples and an exhaustive training

or it gets outdated quickly. To deal with this, many recent works propose semisuper-

vised training that collects samples automatically at runtime (PERNICI; BIMBO, 2013;

ROSENBERG et al., 2005; KALAL et al., 2012). The key issue of semisupervised learning

is the method for sample collection. It must accept new object appearances avoiding noise

and other objects which may cover it. By using improper collected samples, the detector

might recognize false positives, leading to an effect similar to the drift problem.

In a long-term scenario, both approaches eventually fail. Tracker may lose permanently

the object after some time; detector may be outdated quickly. But, what is a failure in one

might be a strength in the other. For this reason, Kalal et al. (2012) proposed a semisu-

pervised learning combining both approaches, each representing a different component of

their Tracking-Learning-Detection (TLD) framework. It uses the motion model tracker to

16

fill the detector training set with new appearances. The detector corrects tracker failures

replacing the template. The complementary nature of the components and the results

achieved suggest that this is a promising combination. Not all tracker responses are used

for retraining. The detector similarity function is used to validate them and as well to

select the system output among tracker and detector responses. In contrast, Rosenberg et

al. (2005) show that their detector-independent metric outperforms the detector similarity

function in a retraining step because the learning and detection failure cases tend to be

distinct.

Here, we define as mediator the component responsible for integrating the outcomes

and updating multiple trackers. It is composed of one selector and many validators. The

selector is the component responsible for receiving all the responses and choosing one

to be the system output. Each validator is responsible for updating one target tracker.

For that, it receives one or more responses from the other trackers and allows or not

the updating of the target tracker using these responses. Motivated by Rosenberg et

al. (2005), we propose a basic premise for any mediator : it should make decisions using

their own knowledge and strategy, i.e., work independently of its mediated trackers. This

implies that it cannot be strongly based on any of the trackers models.

In this work, we propose a mediator for the motion tracker and the detector proposed

in TLD framework. The mediator in our method is composed of one selector and one

validator that has the detector as target tracker. The system output is used to update

the motion tracker without any validation. Differently from TLD, the proposed mediator

is independently defined.

1.1 PROBLEM DEFINITION

Given a sequence of frames V = {f1, ..., fm} and a bounding box ~bb1 containing the object

of interest in the first frame, we want to estimate the object state in the rest of the

sequence. The object state includes its position and scale, if it is visible, given by a

bounding box in the respective frame. Thus, we want to find the set of states for the

respective frames, i.e., the trajectory T = {~bb1, ..., ~bbm}, where ~bbi coordinates are null if

the object is not present in frame fi.

The first bounding box is given by the user and the whole information contained on

it represents one object appearance. For adapting to the wide variety of appearances,

17

the system should collect new bounding boxes automatically at runtime, avoiding other

objects in the scene. If the object goes out of the scene, the tracker should recover it.

Besides, it should work well in long sequences. No restrictions are placed on the tracked

object or scenario, except that the bounding box size must be greater than a threshold

and the object must be visible in the first frame.

1.2 OBJECTIVES

The primary objective of our work is to propose mediation components that are defined

independently of the considered trackers, in order to improve the performance of the

original TLD. As secondary objectives, our method is supposed to:

� detect gradual degradation of the motion tracker output for deciding when it is

reliable.

� find the soundest estimation between both trackers outputs in each frame.

� not compromise the computational cost when compared with the original method.

1.3 METHODOLOGY

The underlying premise of this work is that the combination of different strategies (i.e.,

multiple trackers) in a unified method might be more effective to solve the VOT problem

than using a single tracker approach. This assumption is well accepted by the scientific

community, being a trend in recent researches as Kalal et al. (2012) and Lee et al. (2015).

In this scenario, the strategies are indepently applied and the outcomes are combined to

get the final response. The central issue of our research is how to combine the outcomes.

We call as mediator the component responsible for this integration because it mediates

between components in potential disagreement. Our first and most important hypothesis

is that the more independent from the trackers is the mediator, the less unbiased are

the results. For us, an independent mediator is the one that uses its own strategy and

knowledge in order to make fair decisions exploiting the advantages of each mediated

tracker. Using a different strategy does not guarantee that the results are fully unbiased.

But the failure cases of the trackers and the mediator tend to be distinct and so, the

mediator does not tend to support trackers’ failures.

18

The secondary hypothesis of our work is that the trackers in the combination must

be complementary in nature, in the sense that some of them give good results when the

other fail. This is desirable to enhance the possibility of having at least one good response

available for the mediator. If the mediator makes decisions through statistical measures,

this condition is in fact necessary. When working with the mode, for instance, the use

of trackers that fail at the same time might lead the mediator to choose the incorrect

response.

On this basis, we propose a mediator for two complementary trackers from TLD. In our

available time, it was not possible to test the addition of other trackers in the framework

as it requires a careful analysis about the complementarity of the new tracker. Although

we provide some evidences for the validity of our hypothesis based on experiments, further

investigations are needed in order to demonstrate it.

The main contribution of this work is an approach that can collect a greater variety of

object appearances for detector retraining, if compared to TLD, as the validity decision

is not influenced by the detector itself. Similarly, the selection component can identify

good responses of the motion tracker, avoiding improper re-initializations. As a result,

our tracker outperforms the original, in particular by estimating the correct position more

often. In other words, it achieves a wider coverage of the expected trajectory.

1.4 PRIOR DISCUSSIONS

Before proceeding, it is important to bring in some initial issues about our problem. The

first issue concerns the appearance concept. For human beings, the appearance comprises

the visible aspects of a certain object. These aspects are perceived by us through a very

complex process that are related to prior long lived experiences. In this work, we refer as

appearance the set of statistical measurements taken from the object region in an image,

i.e., the information that is available in the region and that the system is capable of

extracting. These statistical measurements are called features. This way, the problem

addressed here is indeed to find regions in frames that present features similar to those in

the known appearance.

The second issue concerns the features variability. Several conditions may change the

appearance of the target object throughout a video. Some examples are lighting changes,

occlusions, deformations, different points of view, among others. If the system considers

19

aspects that vary under such conditions, it may fail in identifying the object. There are

two basic approaches to the problem: 1. adapting to the variations using the subsequently

found regions; 2. consider only the features that are strongly invariant in some of those

conditions. In addition to the known strong features, the accepted regions may bring new

information about the object, but it may also carry undesirable information. Without

the supervision of the user, the system has difficulty in differing both information. In our

case, the second choice has the advantage of considering only genuine features given in the

first frame by the user. Strictly speaking, both approaches cannot solve the indefinitely

long tracking problem. So, the goal is in fact to track farther.

In our work, all the framework components must identify the object. Motion tracker

and detector collect new appearances to track, as originally proposed. For our selector

we have tested, unsuccessfully, a method for collecting features to validate all trackers

responses. Although other methods may be explored, we have chosen to maintain the

authenticity of the first original features in our selection process. For our validator, instead

of identifying the object, we have chosen to identify what is not the object, using the object

surrounding. If the motion tracker response contains many of these negative features, it

is not reliable. As the background comprises many objects that do not share features,

collecting new negative features is a more interesting approach than exploring invariant

ones.

1.5 OUTLINE

In this chapter, we introduced the problem of object tracking in videos adressed in this

work and our proposal. The rest of the work is organized as follows.

In Chapter 2, we present the main fundamentals of our work. Methods for object

description are presented in Section 2.1, that includes histograms commonly used in

appearance-based tasks, and in Section 2.2, where we briefly describe SIFT (Scale In-

variant Feature Tranform) keypoint extraction and matching methods. In Section 2.3, we

give details about the TLD tracker and its components that are the basis of our proposal.

In Chapter 3, we present some appearance-based works in literature that attempt to

deal with the VOT problem. They are subdivided into two main trends characterized in

the beginning of the chapter.

Chapter 4 is dedicated to our method. We first propose a generical mediator for

20

multiple trackers and some required properties. From this, we propose a tracker based on

TLD. The results of the proposed tracker are presented in Chapter 5. Finally, Chapter 6

presents the conclusions of our work and potential future works.

21

2 FUNDAMENTALS

In this chapter, we present some fundamental concepts for our work. But, first of all, we

introduce some general definitions.

Image: An image is a 2D continuous signal f : R2 → Rc which associates a point

~p = (x, y) to a brightness vector ~v ∈ Rc. Each vector element represents the channel

intensity for the point. A digital image f is a discrete representation of an image that is

usually seen as an m × n matrix. In this work, we refer to a grayscale digital image as

image and the gray values are in the interval [0, 255]. By convention, the image origin is

located at the lower left corner.

Video: A video V is a sequence of images ordered by time, V = {f1, · · · , fk}. Images

from a video sequence are often called frames.

Bounding box: A bounding box is a rectangle which possibly contains an object of

interest in a particular frame. It provides the position and scale of the object (object

state). Formally, it is given by its minimum and maximum coordinates ~bb = (i1, j1, i2, j2).

~bb = (0, 0, 0, 0) indicates that the object is not visible in the frame.

Trajectory: The object trajectory T is the set of states that it assumes throughout a

video V , T = {~bb1, · · · , ~bbk}.

2.1 HISTOGRAMS

Histogram is a statistical tool to represent data distribution considering a certain aspect.

The set of possible values is divided into intervals (or bins) and each one is associated

with the number of observations that falls into it. It is a useful tool for comparing sets

of different sizes, since it has a fixed size for all of them and is normalized. Here, we

present three histograms that are fundamental for representing object appearances in our

proposal. We combine their information to form a rich descriptor similar to Schwartz and

Davis (2009). For that, consider f a frame, f(~p) the color intensity for each pixel ~p = (i, j)

22

in f, ~bb the appearance being described and BB = {~p | i1 ≤ i ≤ i2, j1 ≤ j ≤ j2} the set of

points within ~bb.

Color Histogram: This histogram encodes the color distribution for a given image.

Different objects tend to have different color distributions. Any color space can be used,

but RGB and HSV are more common. To combine the channels brightness, some works

compute multiple histograms (one per channel) and concatenate them. In our proposal,

we use only one channel. This one-channel histogram is called intensity histogram.

Formally, each element of the color histogram ~c = (c1, · · · , cnc) is given by:

ca =
∑
~p∈BB

δa,b(f(~p)), (2.1)

where a ∈ {1, · · · , nc} is the bin index, δa,b(f(~p)) is the Kronecker delta and b(f(~p)) is the bin

index that the intensity f(~p) fell into. Considering a uniform subdivision of the intensity

interval, the bin index is given by b(f(~p)) =
⌊
f(~p)·nc

255

⌋
+ 1.

Since the spatial locality is not considered, it is a suitable feature vector for objects that

present considerable variations during the video (PÉREZ et al., 2002), as it is invariant to

rotations, scaling and some deformations. However, not considering position may also lead

to a low discriminative power. To overcome this limitation, we combine color information

with other visual cues.

Local Binary Patterns: Local Binary Patterns (LBP) are features that represent local

texture of an image and was proposed by Ojala et al. (1996). The LBP for a given point

is an integer representing its neighborhood. It is computed through a set of binary tests

BT = {bt0, · · · , bt7}, using the central point ~p intensity as threshold to evaluate each

neighbor ~pu:

btu(~p) =

1, f(~pu) > f(~p)

0, otherwise
, u ∈ {0, · · · , 7}.

As the original, we use a 3 × 3 neighborhood on a unit circle centered by the point ~p

(Fig. 2.1(a)), although other neighborhoods may be used. LBP value for the point ~p is

given by:

lbp(~p) =
∑

u∈{0,··· ,7}

btu(~p) · 27−u.

23

With 8 neighbors, the maximum value that lbp might assume is 28 − 1 = 255. Examples

of LBP value computing are shown in Figure 2.1(b).

1

234

5

6 7 8

(a)

0

0

0

0

0

0

0 0

(00000000)2 = (0)10

0

0

0

0

0

0

0 0

0

1

1

1

1

0

0 0

(10101010)2 = (170)10(00000000)2 = (0)10

(b)

Figure 2.1: Scheme of LBP value computing. The dark gray circle marks the central point
~p whose intensity is used as threshold. (a) General process: binary tests are performed
between the threshold and the neighbors intensity in the indicated order. They give 1
for neighbors in lighter color and 0 for neighbors in darker color regarding the threshold.
(b) Examples of texture patterns: Homogeneous textures have the LBP value equal to 0
while a different pattern has the value 170.

As color information, LBP values from a given appearance are encoded into histograms.

But, for texture the appearance region is subdivided into four non-overlapping blocks

and each one generates a different histogram. This way, the set BB is subdivided into

BB1,BB2,BB3,BB4, and each subset BBi generates a histogram ~li = (li1, · · · , linl
), where

the bins are populated as follows:

lia =
∑
~p∈BBi

δa,b(lbp(~p)). (2.2)

The number of bins is nl = 28 = 256 and the bin index is given by b(lbp(~p)) = lbp(~p) + 1.

LBP histogram is quite simple and has low computational cost since LBP values might

be calculated using binary operations. Different from color histogram, it is not invariant

to rotations and scaling. By subdividing the set BB, it considers to some extent texture

positions. LBP is invariant to global grayscale changes that preserve intensity orders

(monotonic), as global illumination changes.

Histogram of Oriented Gradients: Histogram of oriented gradients (HOG) encodes

shape information and the original HOG2D, concerning 2D gradient vectors, was proposed

by Dalal and Triggs (2005). In calculus, the gradient vector ∇f of a multivariable and

continuous function f points to the direction of the greatest rate of increase of the function.

24

Its magnitude indicates how much f rises in that direction. The gradient elements are

the partial derivatives at the point ~p with respect to f variables:

∇f (~p) =

(
∂f (~p)

∂x1
, · · · , ∂f (~p)

∂xn

)
= (Gx1 , · · · , Gxn).

For continuous images f : R2 → Rc, high rates of increase indicate significant color

variation and, consequently, the presence of edges/borders. When working with a discrete

image f, the gradient can be approximated by using the Sobel operators:

Si =


−1 0 +1

−2 0 +2

−1 0 +1

 and Sj =


−1 −2 −1

0 0 0

+1 +2 +1

 .

This way, at the point ~p, horizontal and vertical derivatives Gi and Gj are given by Si

and Sj convolved with the image f around the point.

To compute HOG2D, the gradient vectors g(~p) = (Gi, Gj) are converted to equivalent

polar coordinates g′(~p) = (θ, r), with θ = tan−1(Gj
Gi

), θ ∈ [0, 2π] and r =‖ g(~p) ‖. The

angle θ is used to define the corresponding bins that the gradient vector is assigned for,

while its magnitude determines the increase in the bin value. Thus, the shape histogram

~s = (s1, · · · , sns) is populated as follows:

sa =
∑
~p∈BB

r(~p)ωa(θ(~p)). (2.3)

For HOG, instead of using Kronecker delta, we use a Gaussian function ωa as a weighting

factor, spreading the energy through the neighboring bins. Farthest neighbors receive

smaller increases.

As LBP histogram, HOG is not invariant to rotations. It is somewhat invariant to

scaling, if the angle frequencies are proportionately kept, and invariant to monotonic

grayscale changes.

Cosine similarity for histogram matching: Cosine similarity is a metric for vector

comparison. Considering ~v and ~u two vectors in Rn, cosine similarity cos : Rn × Rn →

[−1, 1] is given by:

cos(~v, ~u) = cos(θ) =
〈~v, ~u〉
‖ ~v ‖‖ ~u ‖

. (2.4)

25

By using this metric, vectors with the same orientation get the highest score, while op-

posite vectors have the smallest score. This is a useful similarity function for histogram

comparisons, since it can indicate if two distributions are proportionally similar. As the

presented histograms represent the frequencies of the observations, all of their coordinates

are positive. Thus, the similarity between two histograms falls in the range [0, 1].

2.2 SIFT AND OCCLUSION DETECTION

Lowe (2004) proposed a method for extracting, describing and matching invariant fea-

tures from images for object recognition. This method is called Scale Invariant Feature

Transform (SIFT) since it represents the whole object/image by scale invariant keypoints.

Besides being invariant to scaling, SIFT keypoints are invariant to rotation and transla-

tion, partially invariant to change in illumination and robust to changes in 3D viewpoint

and noise addition.

The first step of the method is to detect prominent points at different scales using the

scale space representation. In the scale space, the original image is represented by a family

of smoothed versions of itself, parametrized by the level of smoothing. At higher scale

levels, fine details are filtered out, which means that they are not discriminative in that

scale. Points with low contrast and along edges are discarded. The remaining keypoints

are described by the gradient of the points from its surrounding region. The gradient

vectors are encoded into 16 orientation histograms with 8 bins, that are concatenated to

form the keypoint descriptor ~d ∈ R128.

Object recognition is carried out by means of individual matchings of the features.

Every candidate keypoint is compared with stored keypoints from a training data using

the Euclidean distance. The nearest neighbors are the most similar keypoints. To avoid

poor correspondences, it filters some matchings using a threshold. However, instead of

applying the threshold only in the nearest neighbor, it is applied in the ratio between

the nearest and the second nearest keypoint in the keypoints set. That is, considering

1nn(~d) and 2nn(~d) the nearest neighbors of ~d in the keypoints set C, ~d is accepted

if ‖
~d−1nn(~d)‖
‖~d−2nn(~d)‖

< λc. This way, it discards features that have a good match with many

keypoints (non-discriminative), or that do not have a good match with any keypoints,

keeping the cases where ‖ ~d− 1nn(~d) ‖�‖ ~d− 2nn(~d) ‖.

Exploring the discriminative property of the SIFT keypoints, Pernici and Bimbo (2013)

26

proposed an occlusion detector for retraining decisions in their ALIEN tracker. For each

frame, the tracker extracts keypoints in a search window around the last position. Cur-

rent object position is estimated through weak alignment of SIFT keypoints using stored

features of the object and its context. This results in a set OBB for the frame ft containing

estimated object keypoints. These keypoints may include features that matched with the

context. The key idea to detect occlusions is to find how many of them exist in OBB.

From the estimation process this is straightforward: occlusion features are keypoints that

matched with the context and are in OBB. If the number of occlusion features are greater

than a threshold, the estimation is considered unreliable and the sets of keypoints remains

unaltered. Otherwise, it stores the matched keypoints in the sets. Object and occlusion

features are kept in the set until it reaches a maximum size. Context features, on the

other hand, are kept for a fixed number of frames. Here, we adapt this occlusion detec-

tion method for our motion tracker validation, to detect if its estimation is reliable for the

discriminative tracker retraining.

2.3 TLD FRAMEWORK

In this section, we present the original components of TLD tracker. Three of them are kept

in our proposal: the median flow tracker, the cascaded detector and the P-N learning. We

also present the original validator and selector, although with other names. It is important

to consider that these names, as well the mediator, were defined here to represent our

substitute methods as independent components.

2.3.1 MEDIAN FLOW TRACKER

The motion tracker used in the TLD framework is a slightly modified version of the

median flow tracker (KALAL et al., 2010b). In TLD, it has an additional method to

detect failures. At each time t, the motion tracker receives as input two frames, previous

ft−1 (reference) and current ft (search space), and a bounding box ~bbt−1 representing the

template. It assumes that the bounding box contains an appearance of the target object,

even though this is not always true. One of the mediator ’s responsibilities is to provide

valid bounding boxes for the motion tracker. Using the appearance indicated by ~bbt−1

in ft−1, the motion tracker estimates object position in the current frame, exchanging a

27

bounding box ~bbt. The steps for each time t is presented in Algorithm 1.

Algorithm 1: Median Flow Tracker.

Data: Previous frame ft−1, current frame ft, previous bounding box ~bbt−1.

Result: Estimated bounding box ~bbt.
begin

G← grid(ft−1, ~bbt−1);
G’← pyramidalTracker(ft−1,ft,G);
(G,G’)← pointFiltering(G,G’);
~bbt ← medianFlow(G,G’,~bbt−1);

end

Median flow tracker estimates the object motion by tracking template points selected

in the function grid(). The displacements of these points are estimated in the function

pyramidalTracker() and unreliable displacements are discarded in the function pointFil-

tering(). Overall motion is estimated in the function medianFlow() using the remaining

points displacements. Failures are detected in this function as well. The above functions

are described in more details in the following paragraphs.

1. Grid: In this function, the motion tracker selects equally spaced points within ~bbt−1,

resulting in a 10× 10 grid G. New points are selected at each frame. Displacement

of the selected points are estimated in the pyramidal tracker method.

2. Pyramidal tracker: For point tracking, the median flow tracker uses a version

of the Lucas-Kanade method (LUCAS; KANADE, 1981). In this method, for a

certain point ~p = (i, j) we want to find the displacement vector ~d = (di, dj) such

that the neighborhood of ~p in ft−1 is similar to the neighborhood of ~p + ~d in ft.

Each neighborhood is defined as a (2w+ 1)× (2w+ 1) window around ~p. The error

measure between two points is given by the L2 norm. Thus, for the whole window

we are looking for a vector ~d that minimizes the error function given by:

e(~d) =
∑

~q=(i′,j′)

[ft−1(~q)− ft(~q + ~d)]2,

where i − w ≤ i′ ≤ i + w and j − w ≤ j′ ≤ j + w, i.e., ~q is in the neighborhood of

~p. This method assumes small and homogeneous displacement within the window.

Lower w values capture fine motions, while are robust to noise.

28

Median flow tracker uses the pyramidal version proposed by Bouguet (2001). Lucas-

Kanade and its pyramidal version estimate a vector field for a set of points, which

in median flow case is the set G. In Algorithm 1, the function pyramidalTracker()

outputs the set G′ of terminal points of each vector. Then, we must select the most

reliable points to estimate object motion. The following paragraph presents two

approaches to extract these points.

3. Point filtering: In this stage, two error functions are used to evaluate the quality

of the displacement vectors estimated by the pyramidal tracker. They are presented

below.

(a) Normalized cross-correlation: Normalized cross-correlation (NCC) is a

similarity measure between two signals and it is widely used for template

matching. NCC gives the probability of a target template being located at

a certain position of an image. NCC has low sensitivity to absolute intensity

changes between reference and target images due to normalization.

For point filtering, an error measure is computed from NCC value. Considering

the point ~p = (i1, j1) ∈ G, its corresponding point ~q = (i2, j2) ∈ G’ and two

2wn + 1× 2wn + 1 windows arround them, the NCC value is given by:

NCC(~p, ~q) =

∑
~d=(i,j))(ft−1(~p+ ~d)− w̄1) · (ft(~q + ~d)− w̄2)√∑

~d=(i,j))(ft−1(~p+ ~d)− w̄1)2 ·
∑

~d=(i,j)(ft(~q + ~d)− w̄2)2
,

where −wn ≤ i ≤ wn, −wn ≤ j ≤ wn and w̄1 and w̄2 are the mean intensity

in each window. It falls in the range [−1, 1], where the higher the NCC value,

the better the matching. From this, the NCC error is defined as:

eNCC(~p) = 0.5(1−NCC(~p, ~q)),

which falls in the range [0, 1]. Lower NCC error means higher similarity and,

consequently, higher point reliability. 50% of the points with the worst values

are eliminated.

(b) Forward-Backward error: Forward-backward (FB) is a dissimilarity func-

tion proposed by Kalal et al. (2010b). It is based on the assumption that the

29

point tracker satisfies the symmetry property for equivalence relations. That

is, if the tracker relates a point ~a to a point ~b, it is expected that it relates

the point ~b to the point ~a again. In fact, if the backward point lies on the

neighborhood of ~a, the point ~a can be seen as reliable. Formally, let ~p = (i, j)

be a point in the first image. By applying pyramidal tracking forward, we have

the corresponding point ~pF = (iF , jF) in the second image. Now, by applying

the tracking backward using ~pF (i.e. from the second to the first image), we

have the point ~pB = (iB, jB). FB error for the point ~p is given by the Euclidean

distance between ~p and ~pB:

eFB(~p) =‖ ~pB − ~p ‖ .

FB error is depicted in Figure 2.2. Similar to NCC, 50% of the points with the

worst error are eliminated. By filtering out bad points, tracker avoids occluded

points and noises for the next stage.

Figure 2.2: FB error for point a ~p. Adapted from Kalal et al. (2010b).

4. Median flow: Point tracker gives us a set of vectors which represent the motion.

After filtering out bad points, we can estimate the object position using the median

flow method proposed by Kalal et al. (2010b). The bounding box displacement is

the median in each coordinate ~dm = (dim, djm). This way, the method is robust

to impulse noise and are able to generalize the movement. For the scale factor, we

compute the ratio of the distance between each pair of points in the first and second

image. That is, let ~p1, ~p2 ∈ G be two points in the first image and ~q1, ~q2 ∈ G’ their

corresponding points in the second image. The distance ratio is given by:

distratio(~p1, ~p2) =
‖ ~p2 − ~p1 ‖
‖ ~q2 − ~q1 ‖

.

30

The bounding box scale factor sm is the median of distratio for all the pair of points.

Note that, the bounding box aspect ratio will be kept since we have the same scale

factor for both coordinates. Therefore, given a bounding box ~bbt−1, the displacement

vector ~dt−1m = (dt−1im , dt−1im) and the scale factor st−1m , the coordinates of the new

bounding box ~bbt are calculated from:



it1 = it−11 + dt−1xm + wt−1

2
(1− sim)

jt1 = jt−11 + dt−1ym + ht−1

2
(1− sim)

it2 = it−12 + dt−1xm − wt−1

2
(1− sim)

jt2 = jt−12 + dt−1ym − ht−1

2
(1− sim)

,

where wt−1 = it−12 − it−11 + 1 and ht−1 = jt−12 − jt−11 + 1 are the width and height

of ~bbt−1 respectively. The scale is applied around the bounding box center and the

center position is kept by this transformation. TLD median flow has an additional

failure detector. They define the residual displacement for each point ~pi ∈ G as

being r(~pi) =‖ ~di− ~dm ‖1. If the median of r is greater than 10, a failure is detected

and the motion tracker declares the object as not visible.

2.3.2 CASCADED DETECTOR AND P-N LEARNING

The detector in the TLD framework is inspired on Viola and Jones (2001) and Ozuysal

et al. (2007) methods. The steps for each time t are presented in Algorithm 2. For ev-

ery frame, the detector generates many windows (function scanningWindows()) to decide

about the presence or absence of the object in each one. These windows pass through a

three-stage cascaded classifier that filters out many of them in each stage. The stages are

represented by the functions varianceFilter(), ensembleClassifier(), nearestNeighborClas-

sifier(). At the end of the process, the windows that have not been discarded are more

likely to contain the object. Details of the functions are given in the following paragraphs.

1. Scanning windows: The cascaded detector performs a global search in the frames.

For that, it generates windows in many sizes and at different positions, keeping the

aspect ratio of the first bounding box. Each window is a candidate to be the tracked

object. To decide the most confident one, they pass through the cascaded classifier.

2. Variance filter: The first stage blocks windows that do not present a minimum

31

Algorithm 2: Cascaded detector.

Data: Current frame ft.
Result: Estimated bounding boxes Wt.
begin

W1 ← scanningWindows(ft);
W2 ← varianceFilter(ft,W1);
W3 ← ensembleClassifier(ft,W2);
W← nearestNeighborClassifier(ft,W3);

end

level of details considering the first appearance. This is accomplished through vari-

ance values. This stage has low computational cost since the variance may be

quickly computed by using integral images (VIOLA; JONES, 2001). Windows with

less than half of the first variance value are discarded. No retraining is performed

in this stage.

3. Ensemble classifier: In the second stage, the windows are evaluated through

intensity comparisons between pairs of points. The ensemble is a set of classifiers

that evaluate the remaining candidate windows. Each member of the ensemble

performs a set of tests in the candidate window different from the ones of the other

members. The pairs of points for the tests are selected once for each member and

remain the same till the end of the tracking. Similar to LBP, this set of tests

results in an integer x, representing the window pattern extracted by the member

i. The member vote for the candidate window is given by the posterior probability

p i(y = 1 | x), computed in the training/retraining step. The window passes to the

next stage if the average vote of the members is greater than 0.5.

In the training and retraining steps, the P-N learning component provides a set of

positive and negative samples for the ensemble. Each member of the ensemble uses

these samples to initialize/update its posteriors probabilities. The posteriors are

given by p i(y = 1 | x) = #pi
#pi+#ni

, where #pi is the number of positive samples that

present the pattern x and #ni is the number of negative samples that present the

same pattern by the member i. Before being counted in #pi or #ni, each sample

is classified by the ensemble. If the classification is incorrect, the corresponding

members’ counters are increased.

4. Nearest neighbor classifier (NN classifier): In the last stage, the detector

32

generates a similarity score for each window considering an object model. The object

model comprises two sets of image samples collected so far, one for positive and one

for negative examples. For each candidate, the classifier searches for the nearest

neighbors in these sets by using NCC measure. Let s+ be the NCC similarity related

to the positive nearest neighbor and s− related to the negative. The similarity score

for a candidate window is given by the relative similarity sr = s+

s++s−
. This candidate

is considered positive if its relative similarity is greater than a threshold, sr > θ.

The windows that pass through this last stage are the output of the detector. Note

that, the detector may accept more than one window as being positive.

P-N learning component also provides a set of positive and negative samples for the

NN classifier in the training and retraining steps. Each of them is classified by NN

and, if the classification is incorrect, the samples are inserted in the object model.

P-N learning: P-N learning is the component responsible to send new samples for the

cascaded classifier. For that, at each frame it uses a motion tracker response approved

by the validation method. This component is based on two structural constraints. They

analyze the whole set of scanning windows to send new samples to the ensemble and the

current NN output to send back to it. P-constraint assumes that the object moves along

a trajectory estimated by the motion tracker. Windows labeled as negative that are close

to the valid response of the motion tracker are considered false negatives. N-constraint

assumes that the object is located in only one region at each frame. So, windows far from

the valid response labeled as positive are considered false positives. Their respective false

positives and negatives are sent to the ensemble and NN classifiers.

2.3.3 SELECTION AND VALIDATION

Original selection and validation methods are based on a measure very similar to the

relative similarity from the NN classifier. The difference is that instead of using the whole

set of positive samples to find the nearest neighbor it uses only the first half of the samples,

the oldest ones. This measure is called conservative similarity sc. Besides using a similar

measure, it also uses the object model from NN classifier.

The selection method, originally called integration, receives as input the detector and

motion tracker outputs. It computes the conservative similarity for each response. If

33

the detector outputs a window far from the motion tracker estimation and with a higher

similarity value, this is chosen to be the final response. This final response is also used to

re-initialize the tracker, i.e., to replace its template.

The validation method, originally being the core of reliability, evaluates the motion

tracker responses to send to the learning component. There are two conditions under

which the motion tracker response is considered valid. The first case is when its conserva-

tive similarity is greater than a threshold. The second one is if the motion tracker was not

re-initialized since the last valid response. This second case makes the validation accept

more appearances estimated by the motion tracker. But it is important to remember that

the selection method decides when the tracker may be re-initialized.

34

3 RELATED WORKS

In this chapter, we present some related works that attempt to deal with the aforemen-

tioned challenges in VOT. VOT is a hard problem subject to several conditions. For

this reason, there is a large variety of solutions and categorizing them is not trivial. As

said in Smeulders et al. (2014) survey, the methods do not seem to fit solely in one line

of thought. But, one may note two main trends to solve the problem (KALAL et al.,

2012; SMEULDERS et al., 2014), even though many works mix the concepts. The first

group comprises the trackers by matching or trackers by motion model. The second group

comprises the discriminative trackers or trackers by detection.

Trackers by matching estimate the interframe object motion through template match-

ing. They explore the spatiotemporal coherence of the motion, performing local search

around the last position found. They use only one template for the matching and, as a

consequence of this and the restricted search, they are very fast. To deal with the appear-

ance variety, many tracker replaces the template by the discovered appearance. However,

as a side-effect, the estimation can bring background information, affecting future esti-

mations. This leads to the major problem of the approach, the drift problem. Once an

incorrect estimation replaces the template, the original may be never recovered. This is

typically caused by fast motion, blurring or occlusions. Being aware of this limitation,

many works focus on trackers that resist longer. Other nontraditional trackers propose

the use of an extended model, to overcome the lack of memory.

Figure 3.1: Motion tracker adaptability depicted in David sequence from TLD dataset.
By replacing the template, it can handle changes in pose and illumination.

Discriminative trackers perform global searches and treat every frame independently.

They build classifiers based on foreground-background distinction and so, are able to

detect if the object is out of the scene. Generally, they train the binary classifier in

35

Figure 3.2: Example of drift failure in Car sequence from TLD dataset using a motion
tracker. As the template was replaced, the tracker cannot recover the car after an occlu-
sion.

a supervised fashion. Since the tracker should work well for many objects and their

appearance changes during the video, the training stage has to be exhausting or otherwise,

they become outdated rapidly. Moreover, this exhausting supervised training requires

many labeled examples, which is not always the case of the tracking scenario. As we said,

the object is indicated by only one appearance in the first frame. Some works produce

artificially new examples by deforming the first appearance, but they still cannot overcome

some situations. Finally, the classification cost in discriminative trackers is greater than

in the traditional motion trackers.

Figure 3.3: Example of object recovering after an occlusion in Car sequence from TLD
dataset using a discriminative tracker.

A summary table of both approaches is shown in Table 3.1. Novel proposals seem to

have been converging toward the idea that mixing the concepts improves both trends. For

instance, some trackers by matching keeps an extended model, which are more common in

tracking by detection, to avoid the drift problem. We also have seen a growth interesting

in detectors that collects new samples at runtime (semisupervised training). In Section

3.1 and 3.2, we give details about some trackers in the literature.

36

Figure 3.4: A discriminative tracker (detector) in David sequence from TLD dataset. After
some frames, the first appearance stored in the positive set is useless and the detector is
not able to deal with the appearance changing.

By matching Discriminative

Reference Reduced positive model Positive and negative models

Search Local Global

Strength High speed and adaptability (Fig. 3.1) Recollection (Fig. 3.3)

Weakness Drift problem (Fig. 3.2) Becomes outdated rapidly (Fig. 3.4)

Requires Reference correction
Exhaustive supervised training

or online retraining

Table 3.1: Summary of the two main trends for object tracking.

3.1 TRACKERS BY MATCHING

A remarkable motion tracker is the Lucas-Kanade (LUCAS; KANADE, 1981; BAKER;

MATTHEWS, 2004; BOUGUET, 2001). It estimates the object motion by estimating

individual point displacements between two consecutive frames, the called point tracking.

By estimating point translation, it can handle other linear transformations on the object

appearance. The template is taking from the previous frame and, as it uses points from

this new template without criteria, it may drift rapidly. From that, new methods based

on Lucas-Kanade tracker emerged trying to solve the problem of rapid drifting, tracking

farther.

One of those was proposed by Shi and Tomasi (1994). Besides storing the template

from the previous frame, this tracker stores the first one. The interframe motion is

estimated as in Lucas-Kanade tracker, but the first template is used to assess the quality

37

of the feature points being tracked. If a feature point become too dissimilar from the

original, it is permanently abandoned. This prevents a background feature in the template

from being considered for tracking. However, it does not select new features and the

tracking process may stop owing to lack of points. Another feature selection method

was proposed by Kalal et al. (2010b) for their median flow tracker. They proposed the

forward-backward error to filter the displacement vectors estimated with Lucas-Kanade

tracker. The remaining vectors are used to estimate the object motion. But, different

from Shi and Tomasi (1994), new points are extracted at each new template.

A different approach was proposed by Matthews et al. (2004). As in Shi and Tomasi

(1994), it stores the initial template for assessment and another one for matching. But,

in this tracker the first one is used to decide whether the matching template can be

replaced. If the current estimation is sufficiently similar to the first one, it becomes the

next template. Otherwise, the old one is kept. The difference is that there is always a

template to track.

Even tracking farther than Lucas-Kanade tracker, all of the works presented above

eventually fail because they cannot recover the object. This occurs because they have

only one template for matching, as the first one is used only for assessment. An incorrect

template leads to the drift problem in the same way.

To overcome the lack of memory of the traditional trackers by matching, some authors

proposed trackers by matching with extended model or generative trackers. An example

is the IVT tracker (Incremental Visual Tracking) that stores more than one previous

templates, proposed by Ross et al. (2008). They define a contribution factor that is

higher for the latest templates. After a predefined number of frames, old templates are

abandoned. But, the method also fails in partial and full occlusion that continue for a

long period. The tracking method in the IVT is based on particle filters which is very

common as Lucas-Kanade method in motion trackers. Another generative motion tracker

exploring particle filter was proposed by Zhang et al. (2015), the SST tracker (Structural

Sparse Tracking). It belongs to a subclass of the generative motion trackers: the sparse

trackers. Sparse trackers represent the candidates as a sparse linear combination of the

stored templates. In SST, this is done by using local patches inside the candidate and

templates, preserving the spatial structure. The main advantage of using local patches is

that the tracker is able to overcome partial occlusions.

38

3.2 DISCRIMINATIVE TRACKERS

An important work for object detection was proposed by Viola and Jones (2001) using

positive and negative examples of the object. The detector scans the whole frame using

sliding windows in different scales, but keeping the same aspect ratio. At each position,

it decides whether the object is present or not. The classification process is subdivided

into stages using a cascaded scheme. At each stage, several candidates are filtered out.

The first stage has a lower computational cost, but it is applied in a larger amount of

windows. This scheme reduces the computational cost of evaluating a large amount of

candidate windows all at once. The cascaded classifier is trained once offline.

More recent works explore semisupervised training to reduce the cost of the training

step. For instance, Rosenberg et al. (2005) propose a method for detector retraining.

The detector is trained with a small set of labeled samples. At each classification, it

collects more samples among its own responses. It chooses samples with the highest

score based on a selection metric. They test two selection metrics: the same used for

detector classification and an independently defined metric. Since the goal is to improve

the detector knowledge, it does not seem reasonably use its own metric. Indeed, the

independently defined metric outperforms the detector metric. They also show that the

results achieved by the detector trained in this manner are comparable with those achieved

using a supervised training.

For updating its detector, Kalal et al. (2010a) propose the P-N learning which is the

basis for the TLD tracker (KALAL et al., 2012). It consists of using a motion tracker

to judge detector responses based on two structural constraints. By the first constraint,

responses near from the motion tracker estimation that received a negative label are

considered misclassified. This constraint is called P-constraint since it recognizes positive

samples. The second constraint is the N-constraint that detects false positives. It lies

in the fact that the object is located in only one region at each frame. False negatives

and positives are inserted in the detector training set. As the motion tracker can fail,

its responses are evaluated before being considered for retraining. As said before, this

evaluation is based on the detector metric. Note that the goal is to use the motion tracker

to insert appearances that the detector is not able to recognize by itself in its training set.

But, the outdated knowledge of the detector is used to decide whether these appearances

may be considered. Here, we argue that evaluating these samples with an external metric

39

improves the detector.

Another approach was proposed by (PERNICI; BIMBO, 2013), the ALIEN tracker

(Appearance Learning In Evidential Nuisance). The ALIEN tracker achieved impressive

results in the TLD dataset by exploring SIFT keypoints (Scale Invariant Features Trans-

form). Keypoints are extracted from the first appearance to form the positive set and

from the region around it, the context, to form the negative set. The object position is

estimated by keypoint alignment. If the estimation is considered reliable, the matched

keypoints are collected. The estimation is considered reliable when the number of context

keypoints that match with keypoints from the object is smaller than a threshold, i.e., no

occlusion has occurred. Since the drift problem is strongly related to background insertion

in the object region, this is a suitable technique for our validator. Further details about

the occlusion detection are given in Section 2.2.

Lee et al. (2015) proposed the MTA tracker (Multihypothesis Trajectory Analysis).

It consists of three discriminative trackers working together. The classifiers are based on

SVM (Support Vector Machine) and each one works on a different aspect of the object:

texture, color and illumination invariant features. The trackers estimate three forward

and backward trajectories for a fixed frame interval ending in the current one. They

propose a robustness score over the three pairs of trajectories to select one. The forward

trajectory from the winner classifier is used to retrain the others. Although we use different

components, this method fits in our general framework: multiple trackers and a mediator

composed of a selector that uses an external metric.

40

4 PROPOSED METHOD

Motivated by the possibility of combining different trackers in a unified method, we pro-

pose a general framework depicted in Figure 4.1. It is composed of n trackers working

together. Each one estimates the object position using its own model and strategy. As in

an ensemble of classifiers, a good combination of trackers would be that in which individ-

ual accuracies are satisfactory and they make independent errors (HANSEN; SALAMON,

1990). Thus, in the ideal scenario, at least one tracker per frame would estimate a correct

response.

Estimations

Update

Estimations

Update

Estimations Update

Mediator
Tracker

1

Tracker
2

Tracker
n

Final
response

...

Figure 4.1: General framework for multiple trackers. The mediator component selects the
final response and corrects the trackers.

The component responsible for integrating the outcomes is the mediator. It receives

all the responses and chooses one to be the system output. It does not produce any

new response. If all the input responses are incorrect, its output is going to be incorrect

too. In our approach, the mediator assumes that one of the trackers is giving a good

response for each frame on average. The rationale behind this assumption is that if all

trackers are good for a given application, the mediator is useless. The same applies if

all the trackers are also bad estimators anywhere in the video. Its strenght lies in the

possibility of, among multiple tracker strategies, on average at least one will perform

fairly well when favorable video conditions appear for its tracking expertise. For each

frame, its responsibility is thus to find the correct response among a group of estimations.

This is done by a subcomponent that we call the selector. As an external and central

41

agent, the mediator also has new information to update the trackers. So, it is desirable

that the mediator provides some feedbacks for its mediated trackers considering the other

responses for the frame. The subcomponents responsible for this task are the validators,

each one having a target tracker to update.

If the mediator is based on the knowledge of one of its mediated trackers, it tends

to support this tracker’s failures and spread the error to the others. So, we propose a

basic premise for any mediator : it should make decisions using their own knowledge and

strategy, i.e., work independently of its mediated trackers. In the ideal scenario, it should

be fully unbiased, but this is somewhat a strong requirement because, essentially, most

features are based on the same information.

4.1 METHOD OVERVIEW

Following the presented framework, we propose a tracker based on TLD. Our method

contains two trackers kept from the TLD: the median flow tracker and the cascaded

detector with the P-N learning detailed in Chapter 2. The mediator is composed of one

selector and one validator that has the detector as target tracker. The system output

is used to update the motion tracker without any validation. We aim to show that our

independently-defined selection and validation methods outperform the original.

Object Model

t-1

Template

t-1

Detection

Tracking

Selection
Frame

ft

Model

Model

Model

X

Dt = {bbt
1,...,bbt

m}

bbt
0

bbt
i

i2{0,...,m}

(a) Response selection.

Object Model

t-1

ModelX

Frame

ft

Template

t

bbt
i

Validatorbbt
0

Learningbbt
0,

if it is valid

Dt

S⊂Dt

Object Model

t
Content

(b) Trackers update.

Figure 4.2: Overview of our method where the validator and selector make decisions only with
their own knowledge. The red crosses indicate connections of the original TLD removed in our
proposal.

An overview of our method is depicted in Figure 4.2. System samples and responses

are sub-images delimited by bounding boxes possibly containing the object being tracked.

Thus, all components only exchange BB coordinates containing the sub-image in the

respective frame. The reference appearance is a bounding box in the first frame given

42

by user to initialize the motion tracker and train the detector. The template model is

used exclusively by the tracker and contains a reference frame (the previous one) and

its bounding box. The object model comprises a list of sample bounding boxes collected

so far (training set) and two similarity functions for candidate matching: the relative

similarity used by the NN classifier that considers the whole positive set, and conservative

similarity used by the original selection and validation methods that considers only the

first half of the positive set.

The selector gives the estimated object bounding box for each frame ft (Fig. 4.2(a)).

For that, it receives one bounding box estimated from the motion tracker and a list of

bounding boxes estimated as likely containing the object from the detector. Then, it

selects one of the inputs, if any, to be the system response. The selected response is also

used to update the motion tracker template (Fig. 4.2(b)). The validator decides if the

tracker estimation can be used for retraining the detector. If current tracker estimation

is considered invalid, the object model remains the same. Otherwise, the P-N learning

component uses it as reference to retrain the cascaded detector. The detector responses

considered incorrect are sent to the model to improve future detections.

In the original method, the selector component uses the object model to choose the

final answer. We argue that it tends to benefit detector responses because they are based

on the same similarity functions and samples. It also affects future tracker estimations

since the final response replaces the old template. In the validator, the reliability score

of the tracker response is also given by the object model. This way, the validator uses

the detector knowledge to decide when the detector could be retrained. In our point

of view, the selector and validator components have to be defined independently of the

detector and motion tracker in order to get the best of each approach. So, we propose

new validation and selection methods presented in the following subsections.

4.1.1 PROPOSED SELECTOR

The selector receives one bounding box from the tracker and a list of bounding boxes from

the detector. Tracker and detector might not always provide bounding boxes, meaning

the object is not visible. If no bounding boxes are given, the selector has no output either,

i.e., object not found. Otherwise, it selects one of the inputs as the system response.

Using the first sample, the selector has to decide which response presents a sound

43

appearance of the tracked object at each frame. But the object can assume different

appearances throughout the video and a good selector should take them into account

to accept the most likely and reject the least. To address the problem, we use a rich

descriptor combining color, texture and shape, similar to Schwartz and Davis (2009).

Color information is represented by an intensity histogram ~c ∈ R256 (Eq. 2.1) using

one channel and 256 bins (nc = 256). Texture is represented by four LBP histograms

~l1,~l2,~l3,~l4 ∈ R256 (Eq. 2.2), resulting in 1024 features. Shape is described using a

histogram of oriented gradient ~s ∈ R16 (Eq. 2.3). Each histogram is normalized using

L2 norm. The descriptor is a set H = {~c,~l1,~l2,~l3,~l4, ~s} that contains these features. We

store the descriptor H’ of the initial appearance and compute new descriptors Hj for each

response sent to the selector at runtime (Alg. 3).

Algorithm 3: Response selection.

Data: Current frame ft, tracker responses {~bb
t

0} ∪ {~bb
t

1, · · · ~bb
t

m}.
Result: Selected response ~bb

t

i.
begin

maxSim← 0 ;

foreach ~bb
t

j do
//Compute candidate descriptor

~c← colorHistogram(ft, ~bb
t

j);

{~l1,~l2,~l3,~l4} ← LBPhistograms(ft, ~bb
t

j);

~s← HOG(ft, ~bb
t

j);

Hj ← {~c,~l1,~l2,~l3,~l4, ~s};

//Candidate similarity
sc(Hj)← colorSimilarity(H’,Hj);
s l(Hj)← textureSimilarity(H’,Hj);
ss(Hj)← shapeSimilarity(H’,Hj);

s(Hj)← sc(Hj)+sl(Hj)+ss(Hj)

3
;

if s(Hj) > maxSim then
maxSim← s(Hj);
i← j;

end if

end foreach

end

The goal of the selector is to pick the largest similarity response to the first descriptor.

Since each aspect is represented by different number of histograms and/or features, we

compute three individual similarity values whose votes are evenly weighted to generate

44

the final value. For color and shape, the vote is given by the cosine similarity (Eq. 2.4)

between the corresponding histograms from the first descriptor and the candidate, i.e.,

sc(H) = cos(~c, ~c′) and ss(H) = cos(~s, ~s′). For texture, the vote is the average of the four

LBP histograms:

s l(H) =
cos(~l1, ~l′1) + cos(~l2, ~l′2) + cos(~l3, ~l′3) + cos(~l4, ~l′4)

4
.

The final similarity s(H) is the average between the votes

s(H) =
sc(H) + s l(H) + ss(H)

3
.

As introduced in the Chapter 2, the chosen histograms are invariant under different con-

ditions, in an uncorrelated manner among each other. When the object assumes an

appearance that affect one of them, it is possible that the other similarities achieve higher

values. By using an evenly weighted mean, we reduce the effect of adverse conditions in

the final similarity.

4.1.2 PROPOSED VALIDATOR

Trackers by motion model generally fail when dealing with insertion of background in the

template. TLD’s motion tracker includes a failure detector to identify abrupt changes such

as occlusions, but gradual changes still represent a challenge considering the tracker’s lack

of memory. Since it performs local searches, its responses are somewhat close to the last

one given. For this reason, template degradation often come from elements in the object

neighborhood. To prevent corrupted samples from being added to the detector training

set, we keep a record of context features as proposed by Pernici and Bimbo (PERNICI;

BIMBO, 2013). The context is a region surrounding the object’s bounding boxes within

a fixed margin.

In the first frame f0, we extract SIFT points from the context, defined by a margin

m, forming the initial set C0. At each new frame ft, we match feature points extracted

from the motion tracker’s result ~bb
0

t with the previous context features Ct−1 (Alg. 4). The

matching follows the same steps as proposed in Lowe (2004). 1nn(~d) and 2nn(~d) are,

respectively, the first and second nearest neighbors of the descriptor ~d in Ct−1. If the

number of points matched with the context exceeds a threshold no, the tracked sub-image

45

Algorithm 4: Motion tracker validation

Data: Current frame ft, motion tracker response ~bb
0

t = (i1, i1, j2, j2).
Result: Response validity v (true or false).
begin

v ← false;

//Extract SIFT keypoints from object
P← {(i, j) ∈ Z2 | i1 ≤ i ≤ i2, j1 ≤ j ≤ j2};
St ← {(~p, ~d) | ~p ∈ P is a SIFT keypoint, ~d ∈ R128 is its descriptor};
//Compute matching features with Ct−1

C∗t ← {(~p, ~d) ∈ St |
‖~d−1nn(~d)‖
‖~d−2nn(~d)‖

< λc};

if |C∗t | ≤ no then
//Reliable response
v ← true;

//Extract SIFT keypoints from current context
P’← {(i, j) ∈ Z2 \ P | i1 −m ≤ i ≤ i2 +m, j1 −m ≤ j ≤ j2 +m}
S’t ← {(~p, ~d) | ~p ∈ P’ is a SIFT keypoint, ~d ∈ R128 is its descriptor}
//Store occlusion features
Dt ← Dt−1 ∪ C∗t
if |Dt| > nd then RandomRemoval(Dt, nd)

//Context set update

Ct = Dt ∪ (
t⋃

τ=t−l
S’τ)

end if

end

is not reliable. Otherwise, ~bb
0

t is valid and used for detector retraining (Fig. 4.2(b)).

Context features S’t are collected around ~bb
0

t , within the margin m, for future matchings.

They are kept for l > 1 frames. The occlusion features Dt formed by accumulated matched

points, on the other hand, are kept indefinitely to make sure they will not be detected

as object after l frames. When |Dt| reaches a maximum size, some features are randomly

removed to control set growth. Thus, the new context set Ct is the union of Dt and the l

most recent context features {S ′τ | τ > t− l}.

46

5 EXPERIMENTAL RESULTS

In this chapter, we present the results of our method. In the first two sections, we introduce

the datasets (Sec. 5.1.1) and the evaluation protocol (Sec. 5.2) for our experiments. The

experiments results are shown in the remainder of the chapter.

5.1 DATASETS

As trackers, there is a large variety of datasets in the literature. Here, we choose two

for evaluating our method. The first one is the TLD dataset (KALAL et al., 2012),

as the main goal is to compare our method with TLD tracker. The second one is the

ALOV300++ (Amsterdam Library of Ordinary Videos) proposed by Smeulders et al.

(2014). We are going to give more details about them in following subsections.

5.1.1 TLD DATASET

In Tracking-Learning-Detection paper, Kalal et al. (2012) proposed a new dataset to

evaluate long-term trackers (Fig. 5.1). This dataset consists of 10 sequences of different

objects under challenging conditions as shown in Table 5.1. They combined six existing

short sequences with four additional long sequences. Many sequences of this dataset are

monochromatic and/or have low resolution (about 320× 240).

(a) David (b) Jumping (c) Pedestrian1 (d) Pedestrian2 (e) Pedestrian3

(f) Car (g) Motocross (h) Volkswagen (i) Carchase (j) Panda

Figure 5.1: TLD sequences (KALAL et al., 2012).

Besides providing the sequences, they provided the initial object position and the

expected answers, or ground truth, for each sequence. More than 50% of occlusion and

47

more than 90◦ of out-of-plane rotation are considered that the object is not visible. This

is indicated by the ground truth. Tracker performance is given by the precision, recall

and mainly by f-measure. More details about tracker evaluation are given in section 5.2.

Name Frames
Mov. Partial Full Pose Illum. Scale Similar
camera occ. occ. change change change objects

1. David 761 yes yes no yes yes yes no
2. Jumping 313 yes no no no no no no
3. Pedestrian 1 140 yes no no no no no no
4. Pedestrian 2 338 yes yes yes no no no yes
5. Pedestrian 3 184 yes yes yes no no no yes
6. Car 945 yes yes yes no no no yes
7. Motocross 2665 yes yes yes yes yes yes yes
8. Volkswagen 8576 yes yes yes yes yes yes yes
9. Carchase 9928 yes yes yes yes yes yes yes
10. Panda 3000 yes yes yes yes yes yes no

Table 5.1: TLD dataset (KALAL et al., 2012).

5.1.2 ALOV300++ DATASET

Smeulders et al. (2014) provided an extensive experimental survey about the VOT prob-

lem. They argued that the existing datasets have a reduced number of sequences and

are limited to one application or scenario. So, they proposed a new dataset with 314

sequences to cover diverse circumstances as possible. Among them, there are some com-

mon sequences from other tracking datasets. The sequences are subdivided into fourteen

classes. Examples of class sequences are given in Figure 5.2. The average length of the

sequences in the thirteen short-term classes is 9.2 seconds with a maximum of 35 seconds.

In the long-term class, the length is between one and two minutes. The sequences contain

color images in many resolutions ranging from 192× 144 to 3840× 2160.

As TLD, the ALOV300++ dataset provides the ground truth. The expected answers

are annotated by a rectangular bounding box every fifth frame. For rapid motion, the

annotations are more frequent. The intermediate annotations are given by linear interpo-

lation. For performance analysis, they proposed the use of survival curves, presented in

Section 5.2.

5.2 EVALUATION PROTOCOL - TRAJECTORY QUALITY

For evaluating a tracking method in a particular sequence, we have to evaluate the ac-

curacy of its generated trajectory T = {~bb1, · · · , ~bbk}. Tracking datasets usually provides

48

(a) Light (b) SurfaceCover (c) Specularity (d) Transparency (e) Shape

(f) MotionSmoothness (g) MotionCoherence (h) Clutter (i) Confusion (j) LowConstrast

(k) Occlusion (l) MovingCamera (m) ZoomingCamera (n) LongDuration

Figure 5.2: ALOV300++ examples (SMEULDERS et al., 2014).

the expected trajectory T∗ = {~bb
∗
1, · · · , ~bb

∗
k}, where each bounding box ~bb

∗
t delimits the

object position or indicates that it is not visible in the frame ft. A tracker response ~bbt is

evaluated through the overlap value with the corresponding ground truth ~bb
∗
t . The overlap

value between two visible bounding boxes is given by the ratio between their intersection

and union, i.e., overlap(~bbt, ~bb
∗
t) =

~bbt∩~bb
∗
t

~bbt∪~bb
∗
t

(Fig. 5.3). The response is considered correct

if both the response and corresponding ground truth are visible, and the overlap value is

greater than a threshold (25% or 50% depending on the tracker being compared). Higher

overlap values mean that the tracker response better fits the ground truth.

A

B

overlap = A∩B
A∪B

Figure 5.3: Overlap value for two bounding boxes.

For the whole trajectory, the perfomance is given by precision, recall and f-measure

(f-score). Precision P is the number of correct responses divided by the number of the

responses declared visible by the tracker. Recall R is the number of correct responses

divided by the number of visible ground truths. F-measure F is given by F = 2PR
P+R

and it

is the main metric for comparing results, since it combines precision and recall. Tracker

overall performance for the whole dataset is given by the mean performance weighted by

49

the number of frames of the sequence. This evaluation protocol is valid for both datasets

used in this work. Following the provided protocols, we use an overlap threshold equal to

25% for tests in the TLD dataset and 50% for ALOV300++ tests.

Survival curve: The reduced number of videos of TLD allows individual analysis as

presented above. For ALOV300++ dataset, on the other hand, the analysis is carried out

via class perfomance. For that, the f-scores for a given class are sorted from the best to

the worst, generating a survival curve. The resulting curve indicates how many sequences

and to what percentage of each sequence the tracker survives. If the tracker has a great

performance for a few sequences, but not for all, the curve falls fast. Class perfomance is

also given by the mean performance weighted by its sequence’s number of frames.

5.3 RESULTS

In our experiments, we compare the original and the proposed selector/validator. The

components were combined into four variations: original selector and validator (os-ov),

original selector and proposed validator (os-pv), proposed selector and original validator

(ps-ov), proposed selector and validator (ps-pv). For every variation, we tested different

tracker and detector settings such as different window sizes for the tracker optical flow.

In the following results, we used the setting with the best overall performance for each

variation. For the validator, we use no = 2, m = 20, nd = 1500 and l = 10 as proposed

in the ALIEN (PERNICI; BIMBO, 2013) and λc = 0.7 that empirically gave the best

results. The best combination of parameters and components was tested only on TLD

dataset, for simplicity, and kept in the ALOV300++.

We fully implemented the TLD tracker to conduct these experiments. By using our

own implementation instead of the published results, we insure that the achieved results

was caused by the component replacement. All experiments were performed in a machine

with an Intel® Core�i7, 2.93GHz processor, 8GB of memory and Ubuntu 13.10 operating

system running a single thread. The method was implemented in C++ using the OpenCV

(Open Source Computer Vision) library to handle video capture and manipulation. We

also used the pyramidal version of Lucas-Kanade method for optical flow estimation and

the Sobel operators to compute the gradients for the HOG descriptor, both provided by

the same library. For SIFT keypoint extraction, we used the VLfeat library.

50

5.3.1 SELECTOR GENERALITY POWER

The goal of this first experiment is to investigate the selection metric quality. As said,

the selector assumes that at least one of the input response is correct and their task is

to recognize it. This way, it must give a high similarity score for the correct response.

Considering that, we have tested the selectors on the expected bounding boxes, gener-

ating a similarity curve. This curve gives us a clue about the generality power of each

selector. As original selection uses collected samples, we compute the similarity score for

the expected bounding boxes during the tracking process.

Figure 5.4: Similarity values for the David ground truth using the original (os) and
proposed (ps) selection similarities. The higher the values, the better the generality
power of the similarity function.

The proposed selection outperforms the original one in most of the sequences, except

for David sequence (Fig. 5.4). Our method fails because of lack of details in the first frame

of the David sequence (Fig. 5.5). Since we work with partially invariant features and David

sequence presents a drastically change in illumination, the other features cannot handle

the color similarity decrease. By collecting new samples, the original method is able to

obtain better scores in this sequence.

For all of the other sequences, our method achieved better scores. In some cases it

was slightly better: Pedestrian2, Pedestrian3 (Fig. 5.6), Volkswagen and Panda, and in

the others it was significantly better: Jumping, Pedestrian1, Car (Fig. 5.7), Motocross

and Carchase. This first experiment indicates a greater generality power of our method,

which may be an initial clue for component replacement. In the following experiment, we

test the effect of the selector replacement on tracker performance.

51

Figure 5.5: First frame of David sequence. The lack of details affects our selector metric.

Figure 5.6: Similarity values for the Pedestrian3 ground truth using the original (os) and
proposed (ps) selection similarities. The higher the values, the better the generality power
of the similarity function.

Figure 5.7: Similarity values for the Car ground truth using the original (os) and proposed
(ps) selection similarities. The higher the values, the better the generality power of the
similarity function.

52

5.3.2 COMPONENT REPLACEMENT

Figure 5.8: F-measure by sequence and variation. os is the original selector and ps the
proposed one. ov is the original validator and pv the proposed one.

In the second experiment, we analyze the effect of replacing each component in the

original method using the aforementioned variations. F-scores by sequence and variation

are shown in Figure 5.8. For some sequences (David, Jumping, Car, Motocross, Volkswa-

gen) the f-measure decreases considerably when replacing only the validator (os-pv). A

possible cause of this low performance is incorrect motion tracker re-initialization by the

selector. Figure 5.9 shows an example during the David sequence, where the selector picks

the detector’s response even when the tracker gives a better one. This leads to a template

change in the tracker, affecting its future estimations and, consequently, the validator ’s

tasks. This occurs in other sequences and illustrates how the error from a component may

cascade through the system if the failure cases are the same (the detector and selector

have failed). As such, if the validator cannot accept good samples for detector retraining,

the detector cannot send good responses to the selector either. We argue that all modules

must take their decisions independently to reduce this coupling problem.

The performance for ps-ov remains the same for some sequences (David, Jumping,

Pedestrian3, Volkswagen) and increased for others (Pedestrian1, Car, Carchase). In Pedes-

trian2, Motocross and Panda, on the other hand, the performance has decreased. This

may be caused by poor quality of trackers responses or poor selector performance in these

sequences. But, note that even in the sequences where the performance decreased by re-

placing one of the components, using both of our decoupled proposals (ps-pv) give better

results related to os-ov.

53

Training setSelected output
Detector

output

Tracker

output

0.34

0.2
7

Figure 5.9: Example of incorrect tracker re-initialization in David sequence using os-pv.
Even with a good training set, the similarity value for the correct tracker output is smaller.
It is important to remember that os uses only the first 50% of the samples.

Additional variations: We have also tested an additional validation method based

on our selection metric (pv2). In this method, we follow the same steps of original

validation, but instead of using detector conservative similarity and model we use the

mean cosine similarity from the selector. So, pv is also independent from the detector.

With this method, we generated two additional variations os-pv2 and ps-pv2, covering all

the possible combinations with the available selectors and validators. Overall performance

for the six combinations are shown in Table 5.2. They are ordered from the worst f-

measure to the best. We can see that changing ov to one of our independent validator

was important for recall improvement, even keeping os, which means that the tracker

covered more of the expected trajectory. This may occur because the validator accepts

more samples for detector retraining and so, detector is able to accept different views from

the object. In situations as full occlusions, the motion tracker inevitably fails. But the

updated detector is able to recover the object.

In the best combination, besides the selector and validator being independent from

the detector, they are also independent from each other. As those component may fail, its

failures cases must be distinct too. We want to highlight in these experiments that, by the

strong connection between the components, we have to avoid reinforcement of failures.

5.3.3 SELECTOR RETRAINING

Our proposed selector uses only the first appearance to judge the input responses. But

we have also tested sample collection throughout the video for this component. In this

54

Variation
Overall perfomance

P / R / F

ps-ov 0.85 / 0.58 / 0.63
os-ov 0.88 / 0.59 / 0.64
os-pv 0.73 / 0.70 / 0.71
os-pv2 0.84 / 0.70 / 0.73
ps-pv2 0.82 / 0.72 / 0.75
ps-pv 0.92 / 0.76 / 0.81

Table 5.2: Comparison among overall performance of the six variations. They are ordered
from the worst f-measure to the best.

experiment the selector stores the selected response for future selections. Candidate

bounding boxes sent to the selector are compared with each stored samples following

the same steps when using only one. However, we use these individual scores to compute

a model score. We have tested three basic variants for this:

� Highest: the model score is given by the highest score.

� Median: the model score is given by the median of the scores.

� Mean: the model score is given by the mean score.

Sequence Frames
Highest Median Mean

P / R / F P / R / F P / R / F

David 761 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
Jumping 313 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
Pedestrian 1 140 0.62 / 0.26 / 0.37 0.37 / 0.21 / 0.26 0.37 / 0.21 / 0.26
Pedestrian 2 338 0.96 / 0.83 / 0.89 0.90 / 0.97 / 0.93 0.90 / 0.97 / 0.93
Pedestrian 3 184 0.98 / 1.00 / 0.99 0.96 / 1.00 / 0.98 0.96 / 1.00 / 0.98
Car 945 0.94 / 0.99 / 0.96 0.93 / 0.99 / 0.96 0.93 / 0.99 / 0.96
Motocross 2665 0.68 / 0.54 / 0.60 0.74 / 0.85 / 0.79 0.87 / 0.77 / 0.82
Volkswagen 8576 0.64 / 0.71 / 0.68 0.75 / 0.88 / 0.81 0.81 / 0.95 / 0.87
Carchase 9928 0.72 / 0.50 / 0.59 0.64 / 0.50 / 0.56 0.66 / 0.54 / 0.59
Panda 3000 0.05 / 0.05 / 0.05 0.47 / 0.52 / 0.50 0.28 / 0.29 / 0.29

mean 26850 0.64 / 0.57 / 0.59 0.70 / 0.70 / 0.69 0.71 / 0.71 / 0.71

Table 5.3: Comparison among different model similarities when collecting samples for the
selector in ps-pv. Model similarities are ordered by the highest score, the median of the
scores or the mean score.

The results for these three model scores are shown in Table 5.3 using ps-pv. We can see

that the mean similarity achieved the best results. However, neither of the three options

outperformed the selector without multiple samples. Being a classifier, the selector would

need an external metric for retraining/correction as the detector and motion tracker.

55

(a) os-ov (b) ps-pv

Figure 5.10: Comparison between os-ov and ps-pv perfomances for a given frame in
Carchase sequence. ps-pv estimated the correct position because it collected a greater
variety of appearances, different from os-ov that failed in this frame.

But, proposing a metric or a component to retrain the selector would make the problem

recursive, considering that it is already a component for mediation. So, we chose to keep

our selector working only with invariant features from the first appearance.

5.3.4 OS-OV × PS-PV - DETAILED RESULTS

Detailed results of os-ov and ps-pv are given in Table 5.4. Note that our proposal increased

the recall of almost all the sequences without compromising the precision. This means that

our method is capable of tracking farther. In particular, sequences Motocross, Carchase

and Panda had a meaningful improvement. The objects in Motocross and Carchase

change their pose throughout the sequence. In Panda, the object deforms constantly. This

variety of appearances becomes a failure case of os-ov since its validator, by specifically

using normalized cross-correlation (NCC), does not include new appearances that are

very far from the known ones. By choosing NCC, os-ov imbues to its validator a property

from the detector that is not found in the tracker. This goes against the main goal of

using the tracker’s property of accepting new appearances to improve the detector. In

ps-pv, by assigning to the validator a less partial method, it is possible to obtain a richer

training set, that accepts more distinct appearances. We atribute this validator property,

along with proper selector activity, to the increase in performance. Figure 5.10 shows the

object state estimated by each of the trackers in Carchase sequence. We can see that

ps-pv obtained a richer training set, allowing the correct estimation of the object position

when it changes its pose, while os-ov improperly declares the object as not visible in the

same frame.

56

Video Frames
os-ov (TLD) ps-pv (our)
P / R / F P / R / F

David 761 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
Jumping 313 1.00 / 0.98 / 0.99 1.00 / 1.00 / 1.00
Pedestrian1 140 0.39 / 0.13 / 0.19 0.37 / 0.21 / 0.26
Pedestrian2 338 0.99 / 0.68 / 0.81 0.90 / 0.97 / 0.93
Pedestrian3 184 0.99 / 1.00 / 0.99 0.96 / 1.00 / 0.98
Car 945 0.87 / 0.81 / 0.84 0.93 / 0.99 / 0.96
Motocross 2665 0.78 / 0.58 / 0.67 0.88 / 0.86 / 0.87
Volkswagen 8576 0.88 / 0.92 / 0.90 0.93 / 0.91 / 0.92
Carchase 9928 0.96 / 0.21 / 0.35 0.95 / 0.51 / 0.67
Panda 3000 0.64 / 0.70 / 0.67 0.80 / 0.87 / 0.83
Mean 26850 0.88 / 0.59 / 0.64 0.92 / 0.76 / 0.81

Table 5.4: Comparison between os-ov (implemented TLD) and ps-pv (our proposal) in
TLD dataset. Cells on bold represent the highest f-measure.

We have also tested both variations in ALOV300++ dataset. F-scores by class and

variation are shown in Figure 5.11. We can see balanced results in this dataset. os-ov

outperformed ps-pv by wider margins in classes as Specularity, but ps-pv outperformed

os-ov in more aspects. Some results are consistent with the results achieved with TLD.

For instance, our method achieved better score in Shape class. When comparing overall

perfomance by survival curves, the balance is clear (Fig. 5.12). It is important to highlight

that the sequence order in these curves may be different. They did not achieve high score

for the same sequence 1, for example, they achieved high score for the first sequence in

terms of each overall performance.

Concerning the computational cost, our method achieved 5.75 fps against 7.15fps from

os-ov in TLD dataset. We believe that the frame rate decreased because more samples

are inserted in the detector training set, affecting the classification cost. But it was a

small decrease.

5.3.5 TLD - PUBLISHED RESULTS

As said in the beginning of this section, we have chosen to fully implement the TLD tracker

to conduct our experiments instead of using the published results. In this subsection, we

compare the results from both the implemented os-ov and the original TLD paper results

(Tab. 5.5). In addition, we also show the results that we achieved with the demonstration

version made available by the authors.

57

Figure 5.11: Comparison between os-ov (implemented TLD) and ps-pv (our proposal)
in ALOV300++ dataset using F-measure. The classes are 1-Light, 2-SurfaceCover,
3-Specularity, 4-Transparency, 5-Shape, 6-MotionSmoothness, 7-MotionCoherence,
8-Clutter, 9-Confusion, 10-LowConstrast, 11-Occlusion, 12-MovingCamera, 13-
ZoomingCamera and 14-LongDuration.

Figure 5.12: Survival curves for both os-ov and ps-pv variations in ALOV300++ dataset
using f-measure.

58

Sequence Frames
os-ov Demo TLD

P / R / F P / R / F P / R / F

David 761 1.00 / 1.00 / 1.00 0.99 / 0.99 / 0.99 1.00 / 1.00 / 1.00
Jumping 313 1.00 / 0.98 / 0.99 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
Pedestrian 1 140 0.39 / 0.13 / 0.19 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
Pedestrian 2 338 0.99 / 0.68 / 0.81 0.24 / 0.30 / 0.27 0.89 / 0.92 / 0.91
Pedestrian 3 184 0.99 / 1.00 / 0.99 0.99 / 1.00 / 0.99 0.99 / 1.00 / 0.99
Car 945 0.87 / 0.81 / 0.84 0.93 / 0.99 / 0.96 0.92 / 0.97 / 0.94
Motocross 2665 0.78 / 0.58 / 0.67 0.90 / 0.92 / 0.91 0.89 / 0.77 / 0.83
Volkswagen 8576 0.88 / 0.92 / 0.90 0.69 / 0.91 / 0.79 0.80 / 0.96 / 0.87
Carchase 9928 0.96 / 0.21 / 0.35 0.83 / 0.23 / 0.36 0.86 / 0.70 / 0.77
Panda 3000 0.64 / 0.70 / 0.67 0.42 / 0.46 / 0.44 0.58 / 0.63 / 0.60

mean 26850 0.88 / 0.59 / 0.64 0.75 / 0.61 / 0.61 0.82 / 0.81 / 0.81

Table 5.5: Comparison between implemented TLD (os-ov), demonstration version (Demo)
and published results (TLD) in TLD dataset. Bold cells represent the highest f-measure.

TLD tracker contains a large set of parameters and some of them are not reported

in the paper. In our available time, we exploited extensively the paramater space of

os-ov to achieve exactly the same result of the paper, without success. We were not

able to achieve TLD results with the demonstration version either. So, we believe that

the published results may be achieved with different initial positions and/or parameter

settings. To contour this reproducibility problem or the lack of information of the original

paper, we have chosen to compare the original and proposed selector/validator in our

implementation. Our method, however, reached some of the published results and even

outperformed others.

Sequence Frames
TLD ps-pv

P / R / F P / R / F

David 761 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
Jumping 313 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
Pedestrian 1 140 1.00 / 1.00 / 1.00 0.37 / 0.21 / 0.26
Pedestrian 2 338 0.89 / 0.92 / 0.91 0.90 / 0.97 / 0.93
Pedestrian 3 184 0.99 / 1.00 / 0.99 0.96 / 1.00 / 0.98
Car 945 0.92 / 0.97 / 0.94 0.93 / 0.99 / 0.96
Motocross 2665 0.89 / 0.77 / 0.83 0.88 / 0.86 / 0.87
Volkswagen 8576 0.80 / 0.96 / 0.87 0.93 / 0.91 / 0.92
Carchase 9928 0.86 / 0.70 / 0.77 0.95 / 0.51 / 0.67
Panda 3000 0.58 / 0.63 / 0.60 0.80 / 0.87 / 0.83

mean 26850 0.82 / 0.81 / 0.81 0.92 / 0.76 / 0.81

Table 5.6: Comparison between published results (TLD) and our proposal ps-pv in TLD
dataset. Cells on bold represent the highest f-measure.

Comparing the published results with our proposal ps-pv (Tab. 5.6), we can see that

59

both achieved the same f-measure. We achieved a higher precision against a higher re-

call from TLD. Our worst score was on Pedestrian1 which presents considerable camera

motion. This was a challenging sequence for all of our variations. On the other hand,

we continue achieving good results on Panda sequence that presents significant object

deformation.

5.3.6 LITERATURE COMPARISONS

We also compare our method with the state-of-the-art in each dataset. In TLD dataset,

we compare our results with the ALIEN tracker (PERNICI; BIMBO, 2013). The results

published in ALIEN paper consider the overlap threshold equal to 50% and do not con-

sider the Panda sequence. We evaluate our and published TLD outputs under the same

conditions. These results are shown in Table 5.7.

Video Frames
TLD ps-pv (our) ALIEN

P / R / F P / R / F P / R / F

David 761 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 0.99 / 0.98 / 0.99
Jump 313 0.99 / 0.99 / 0.99 0.91 / 0.91 / 0.91 0.99 / 0.87 / 0.92
Ped1 140 1.00 / 1.00 / 1.00 0.28 / 0.16 / 0.20 1.00 / 1.00 / 1.00
Ped2 338 0.89 / 0.92 / 0.91 0.86 / 0.92 / 0.89 0.93 / 0.92 / 0.93
Ped3 184 0.99 / 1.00 / 0.99 0.96 / 1.00 / 0.98 1.00 / 0.90 / 0.95
Car 945 0.92 / 0.97 / 0.94 0.93 / 0.99 / 0.96 0.95 / 1.00 / 0.98
Moto 2665 0.67 / 0.58 / 0.62 0.62 / 0.61 / 0.62 0.69 / 0.81 / 0.74
Volks 8576 0.54 / 0.64 / 0.59 0.54 / 0.53 / 0.54 0.98 / 0.89 / 0.93
Chase 9928 0.50 / 0.40 / 0.45 0.82 / 0.44 / 0.57 0.73 / 0.69 / 0.70
Mean 26850 0.58 / 0.57 / 0.58 0.71 / 0.55 / 0.60 0.84 / 0.80 / 0.82

Table 5.7: Comparison between ps-pv (our proposal) and ALIEN tracker (state-of-the-art).
Cells on bold represent the highest f-measure.

We can see that by using a more rigorous hit criterion for bounding boxes, we achieved

better results than TLD. This means a better fitting of our estimated trajectories with the

expected ones. Considering ALIEN tracker, we achieved slightly better results in David

an Pedestrian3 sequences and comparable performance in many sequences. But ALIEN

tracker outperforms both, showing that estimating object position by keypoints may be

more effective than by subimages.

In ALOV300++, we compare our method with the state-of-the-art Struck tracker,

proposed by Hare et al. (2011) (Fig. 5.13). We can see that our method achieved better

results in Shape and ZoomingCamera, reinforcing our point about Shape class. However,

60

the overall performance of Struck also outperformed our results.

Figure 5.13: Comparison between our proposed method ps-pv and the state-of-the-art
Struck. The classes are 1-Light, 2-SurfaceCover, 3-Specularity, 4-Transparency, 5-Shape,
6-MotionSmoothness, 7-MotionCoherence, 8-Clutter, 9-Confusion, 10-LowConstrast, 11-
Occlusion, 12-MovingCamera, 13-ZoomingCamera and 14-LongDuration.

Figure 5.14: Survival curves for both methods in ALOV300++ dataset using f-measure.

In Figure 5.14, we compare the overall performance of our method with other trackers

in literature: the motion trackers Lucas-kanade by Baker and Matthews (2004) and IVT

by Ross et al. (2008) and the discriminative tracker Struck by (HARE et al., 2011). Our

method outperforms Lucas-Kanade and IVT, but Struck achieved higher scores.

61

6 CONCLUSION

In this work, we proposed a general framework for object tracking combining multiple

trackers. The central component of our framework is the mediator, the component re-

sponsible for integrating the outcomes and updating the trackers. We proposed a basic

premise for any mediator: it should make decisions using their own knowledge and strat-

egy, i.e., work independently of its mediated trackers. The mediator is composed of a

selector that chooses the final response and many validators that update the trackers.

Following this framework, we presented a novel method for object tracking. Our method

includes a mediator and two trackers from TLD: the motion tracker and the detector. The

mediator contains one selector and one validator that updates the detector using motion

tracker responses, both independently defined. In TLD, selection and validation methods,

although with other names, were based solely on the detector strategy and model.

We have built our selector based on invariant features from the first appearance. This

was a good option because it works only with genuine information. However, we showed

that this makes our selector strongly dependent on the quality of the first appearance, as

seen in the similarity value decrease throughout the David ground truth.

We presented quantitative results of our methods in comparison with the original TLD.

Our results show that replacing one non-independent component at a time is not effective.

But replacing both outperforms the original method. We also achieved lower scores when

using selector and validator based on the same metric and model. So, we argue that every

component must be independent from the others since the failures in one may spread to

the whole system.

Our method can deal with objects that present high appearance variations as orienta-

tion changes and deformations. This was observed in both tested datasets, in comparison

with TLD and other methods from the literature. However, under dramatic camera mo-

tion, our method fails. When comparing with other methods, our method outperform

some of them, but does not outperform the state-of-the-art.

In our experiments, we noticed some drawbacks of our method. The validator is vul-

nerable to the tracker re-initializations, since it uses the context of the tracker responses.

Future works may include improvements in the validator in order to recover to older and

62

more reliable contexts. The selector might be improved by learning a distance metric from

the few labeled samples for each aspect. Instead of collecting new samples for the selec-

tor, we could adjust the features weight during the tracking, according to the appearance

changes. Since the selector is a classifier working with a reduced number of candidates, if

compared with the detector, we could explore larger descriptors using other aspects from

the appearance.

REFERENCES

BAKER, S.; MATTHEWS, I. Lucas-kanade 20 years on: A unifying framework. Inter-

national journal of computer vision, Springer, v. 56, n. 3, p. 221–255, 2004.

BOUGUET, J.-Y. Pyramidal implementation of the lucas lanade feature tracker descrip-

tion of the algorithm. Intel Microprocessor Research Labs, v. 5, 2001.

COMPORT, A. I.; MARCHAND, E.; PRESSIGOUT, M.; CHAUMETTE, F. Real-time

markerless tracking for augmented reality: the virtual visual servoing framework. Visu-

alization and Computer Graphics, IEEE Transactions on, IEEE, v. 12, n. 4, p.

615–628, 2006.

DALAL, N.; TRIGGS, B. Histograms of oriented gradients for human detection. In: IEEE.

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-

puter Society Conference on, 2005. v. 1, p. 886–893.

HANSEN, L. K.; SALAMON, P. Neural network ensembles. IEEE transactions on

pattern analysis and machine intelligence, IEEE Computer Society, v. 12, n. 10,

p. 993–1001, 1990.

HARE, S.; SAFFARI, A.; TORR, P. H. Struck: Structured output tracking with kernels.

In: IEEE. Computer Vision (ICCV), 2011 IEEE International Conference on,

2011. p. 263–270.

KALAL, Z.; MATAS, J.; MIKOLAJCZYK, K. P-N learning: Bootstrapping binary clas-

sifiers by structural constraints. Conference on Computer Vision and Pattern

Recognition, 2010.

KALAL, Z.; MIKOLAJCZYK, K.; MATAS, J. Forward-backward error: Automatic de-

tection of tracking failures. In: IEEE. International Conference on Pattern Recog-

nition (ICPR), 2010. p. 23–26.

KALAL, Z.; MIKOLAJCZYK, K.; MATAS, J. Tracking-learning-detection. In: , 2012.

v. 34, n. 7.

LEE, D.-Y.; SIM, J.-Y.; KIM, C.-S. Multihypothesis trajectory analysis for robust visual

tracking. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015. p. 5088–5096.

LOWE, D. G. Distinctive image features from scale-invariant keypoints. International

journal of computer vision, Springer, v. 60, n. 2, p. 91–110, 2004.

LUCAS, B. D.; KANADE, T. An iterative image registration technique with an applica-

tion to stereo vision. In: IJCAI, 1981. v. 81, p. 674–679.

MATTHEWS, I.; ISHIKAWA, T.; BAKER, S. The template update problem. IEEE

Transactions on Pattern Analysis & Machine Intelligence, IEEE, n. 6, p. 810–

815, 2004.

OJALA, T.; PIETIKÄINEN, M.; HARWOOD, D. A comparative study of texture mea-

sures with classification based on featured distributions. Pattern recognition, Elsevier,

v. 29, n. 1, p. 51–59, 1996.

OZUYSAL, M.; FUA, P.; LEPETIT, V. Fast keypoint recognition in ten lines of code.

In: IEEE. Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE

Conference on, 2007. p. 1–8.

PÉREZ, P.; HUE, C.; VERMAAK, J.; GANGNET, M. Color-based probabilistic tracking.

In: Computer vision - ECCV 2002, 2002. p. 661–675.

PERNICI, F.; BIMBO, A. D. Object tracking by oversampling local features. In: , 2013.

ROSENBERG, C.; HEBERT, M.; SCHNEIDERMAN, H. Semi-supervised self-training

of object detection models. In: , 2005.

ROSS, D. A.; LIM, J.; LIN, R.-S.; YANG, M.-H. Incremental learning for robust visual

tracking. International Journal of Computer Vision, Springer, v. 77, n. 1-3, p.

125–141, 2008.

SCHWARTZ, W. R.; DAVIS, L. S. Learning discriminative appearance-based models

using partial least squares. In: IEEE. Computer Graphics and Image Processing

(SIBGRAPI), 2009 XXII Brazilian Symposium on, 2009. p. 322–329.

65

SHAH, M.; JAVED, O.; SHAFIQUE, K. Automated visual surveillance in realistic sce-

narios. IEEE MultiMedia, IEEE, n. 1, p. 30–39, 2007.

SHI, J.; TOMASI, C. Good features to track. In: IEEE. Computer Vision and Pat-

tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society

Conference on, 1994. p. 593–600.

SMEULDERS, A. W.; CHU, D. M.; CUCCHIARA, R.; CALDERARA, S.; DEHGHAN,

A.; SHAH, M. Visual tracking: An experimental survey. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, IEEE, v. 36, n. 7, p. 1442–1468, 2014.

VIOLA, P.; JONES, M. Rapid object detection using a boosted cascade of simple fea-

tures. In: IEEE. Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, 2001. v. 1, p.

I–511.

ZHANG, T.; LIU, S.; XU, C.; YAN, S.; GHANEM, B.; AHUJA, N.; YANG, M.-H.

Structural sparse tracking. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015. p. 150–158.

	 Introduction
	Problem definition
	Objectives
	Methodology
	Prior discussions
	Outline

	 Fundamentals
	Histograms
	SIFT and occlusion detection
	TLD framework
	Median flow tracker
	Cascaded detector and P-N learning
	Selection and validation

	 Related Works
	Trackers by matching
	Discriminative trackers

	 Proposed Method
	Method overview
	Proposed selector
	Proposed validator

	 Experimental Results
	Datasets
	TLD dataset
	ALOV300++ dataset

	Evaluation protocol - Trajectory quality
	Results
	Selector generality power
	Component replacement
	Selector retraining
	os-ov ps-pv - detailed results
	TLD - published results
	Literature comparisons

	 Conclusion
	REFERENCES

