
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Fábio Luiz Marinho de Oliveira

Video Motion Description Based on Histograms of

Sparse Trajectories

Juiz de Fora

2016

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Fábio Luiz Marinho de Oliveira

Video Motion Description Based on Histograms of

Sparse Trajectories

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação,
do Instituto de Ciências Exatas da
Universidade Federal de Juiz de Fora como
requisito parcial para obtenção do t́ıtulo de
Mestre em Ciência da Computação.

Orientador: Marcelo Bernardes Vieira

Juiz de Fora

2016

Fábio Luiz Marinho de Oliveira

Video Motion Description Based on Histograms of Sparse

Trajectories

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação,
do Instituto de Ciências Exatas da
Universidade Federal de Juiz de Fora como
requisito parcial para obtenção do t́ıtulo de
Mestre em Ciência da Computação.

Aprovada em 5 de Setembro de 2016.

BANCA EXAMINADORA

Prof. D.Sc. Marcelo Bernardes Vieira - Orientador
Universidade Federal de Juiz de Fora

Prof. D.Sc. Raul Fonseca Neto
Universidade Federal de Juiz de Fora

Prof. D.Sc. Hélio Pedrini
Universidade Estadual de Campinas

To my family and friends, the

true masters that guided me and

honored me with their love.

ACKNOWLEDGMENTS

I would like to thank my family for the unrelenting help and support, despite not

having any idea of what this work is about. My mother and grandmother, Tereza and

Cleonésia, are of unsurmountable value in my life. Their love and dedication to their

children are something that I can only admire. My aunt Vania and my uncle Marcos,

whose intellect, in their own very different ways, are sources of inspiration. My sister,

Heloisa, who is tenacious, hard working, and fierce beyond what I could ever aim to be.

I’d also like to thank my friends for the companionship, laughter, and fun that I can

always count on them for. Marcelo Sirimarco, for almost 25 years of friendship, no matter

how close or far apart we are. Gustavo Schettino, for the example of determination and

dedication. Gustavo Dias, for the example of great wit and charisma. Gabriel Duque, for

the example of great sensibility, camaraderie, and dedication. Breno, for the example of

great intelligence and friendship. Patŕıcia Duque, for the example of love and for always

having her home open to us all as if it was our own.

I also would like to thank my lab colleagues, whose work I could watch firsthand

and that have taught me a great deal. Ana Mara Figueiredo, Luciano Cejnog, Fernando

Yamada, Liliane Almeida, João Vitor Hauck, Virǵınia Mota, and specially Helena Maia,

who as a true work partner, was always helpful and concerned with the success of her

peers.

Finally, I’d like to thank my masters for providing me with the required knowledge

and guidance. They were many, and every single one have contributed to the construction

of what I am. Having done so, they are all entitled to a part of this work.

”When nothing seems to help, I

would go and look at a

stonecutter hammering away at

his rock perhaps a hundred times

without as much as a crack

showing in it. Yet at the hundred

and first blow it would split in

two. And I knew it was not that

blow that did it, but all that had

gone before.” Jacob A. Riis

RESUMO

Descrição de movimento tem sido um tema desafiador e popular há muitos anos em

visão computacional e processamento de sinais, mas também intimamente relacionado a

aprendizado de máquina e reconhecimento de padrões. Frequentemente, para realizar essa

tarefa, informação de movimento é extráıda e codificada em um descritor. Este trabalho

apresenta um método simples e de rápida computação para extrair essa informação e

codificá-la em descritores baseados em histogramas de deslocamentos relativos. Nossos

descritores são compactos, globais, que agregam informação de quadros inteiros, e o que

chamamos de auto-descritor, que não depende de informações de sequências senão aquela

que pretendemos descrever. Para validar estes descritores e compará-los com outros tra-

balhos, os utilizamos no contexto de Reconhecimento de Ações Humanas, no qual cenas

são classificadas de acordo com as ações nelas exibidas. Nessa validação, obtemos resul-

tados comparáveis aos do estado-da-arte para a base de dados KTH. Também avaliamos

nosso método utilizando as bases UCF11 e Hollywood2, com menores taxas de reconhe-

cimento, considerando suas maiores complexidades. Nossa abordagem é promissora, pelas

razoáveis taxas de reconhecimento obtidas com um método muito menos complexo que os

do estado-da-arte, em termos de velocidade de computação e compacidade dos descritores

obtidos. Adicionalmente, experimentamos com o uso de Aprendizado de Métrica para a

classificação de nossos descritores, com o intuito de melhorar a separabilidade e a com-

pacidade dos descritores. Os resultados com Aprendizado de Métrica apresentam taxas

de reconhecimento inferiores, mas grande melhoria na compacidade dos descritores.

Palavras-chave: Trajetórias esparsas. Descrição de movimento. Reconhecimento

de ações humanas em v́ıdeos. Aprendizado de métrica. Histograma. Descritor

tensorial.

ABSTRACT

Motion description has been a challenging and popular theme over many years within

computer vision and signal processing, but also very closely related to machine learn-

ing and pattern recognition. Very frequently, to address this task, one extracts motion

information from image sequences and encodes this information into a descriptor. This

work presents a simple and fast computing method to extract this information and en-

code it into descriptors based on histograms of relative displacements. Our descriptors

are compact, global, meaning it aggregates information from whole frames, and what we

call self-descriptors, meaning they do not depend on information from sequences other

than the one we want to describe. To validate these descriptors and compare them to

other works, we use them in the context of Human Action Recognition, where scenes are

classified according to the action portrayed. In this validation, we achieve results that are

comparable to those in the state-of-the-art for the KTH dataset. We also evaluate our

method on the UCF11 and Hollywood2 datasets, with lower recognition rates, considering

their higher complexity. Our approach is a promising one, due to the fairly good recogni-

tion rates we obtain with a much less complex method than those of the state-of-the-art,

in terms of speed of computation and final descriptor compactness. Additionally, we ex-

periment with the use of Metric Learning in the classification of our descriptors, aiming

to improve the separability and compactness of the descriptors. Our results for Metric

Learning show inferior recognition rates, but great improvement for the compactness of

the descriptors.

Keywords: Sparse trajectories. Motion description. Video human action

recognition. Metric learning. Histogram. Tensor descriptor.

LIST OF FIGURES

3.1 Block matching bin-tree structure . 25

4.1 Method overview. 32

4.2 Trajectory scheme. 36

4.3 Histogram of directions. 38

4.4 Illustration of three-dimensional second order tensors. 40

5.1 KTH Dataset. 43

5.2 UCF11 Dataset. 44

5.3 Hollywood2 Dataset. 45

6.1 Recognition rates contour plot for KTH dataset. 52

6.2 Frame rates contour plot for KTH dataset. 53

6.3 Recognition rates contour plot for UCF11 dataset. 57

LIST OF TABLES

5.1 Values for secondary parameters of our method. 46

5.2 Values for primary parameters of our method. 47

5.3 Values for primary parameters of our method. 47

5.4 Values for parameters of SVM. 48

5.5 Relative orderings for OSR . 48

5.6 Relative orderings adapted for KTH . 49

5.7 Relative orderings adapted for UCF11. 49

6.1 KTH recognition rates. 51

6.2 Confusion matrix of the best result in KTH dataset 51

6.3 Summarized KTH results . 54

6.4 UCF11 recognition rates. 56

6.5 Confusion matrix of the best result in UCF11 dataset. 58

6.6 Hollywood2 recognition rate. 58

6.7 Confusion matrix summary of the best result in Hollywood2 dataset. 59

6.8 State-of-the-art recognition rates. 60

6.9 KTH recognition rates using Q-wise Metric Learning. 62

6.10 UCF11 recognition rates using Q-wise Metric Learning. 63

LIST OF SYMBOLS

S, s Scalar value, S ∈ R used for fixed values or parameters, s ∈ N used as indices.

r Discrete coordinate or vector r = (x, y), with x, y ∈ N.

D Set of any kind. Example: D = {d1, d2, ..., dn}.

T Tensor or other Positive Semi-definite matrices.

LIST OF ACRONYMS

4SS Four Step Search

BM Block Matching

BoF Bag-of-Features

BoW Bag-of-Words

DCS Divergence-Curl-Shear

HAR Human Action/Activity Recognition

HOF Histogram of Optical Flow

HOG Histogram of Oriented Gradients

HOG3D Histogram of Oriented 3D Gradients

MBH Motion Boundaries Histogram

OSR Object Scene Recognition (dataset)

PSD Positive Semi-definite (matrix)

SAD Sum of Absolute Differences

SSD Sum of Square Differences

SVM Support Vector Machine

VSBM Variable Size Block Matching

CONTENTS

1 INTRODUCTION . 14

1.1 PROBLEM DEFINITION . 15

1.2 OBJECTIVES . 17

2 RELATED WORKS. 19

3 FUNDAMENTALS . 23

3.1 BLOCK MATCHING . 23

3.1.1 Variable Size Block Matching . 25

3.2 ORIENTATION TENSOR . 26

3.3 METRIC LEARNING . 27

3.3.1 Q-wise Metric Learning . 29

4 PROPOSED METHOD . 32

4.1 METHOD OVERVIEW . 32

4.2 METHODOLOGY . 33

4.3 TRAJECTORIES . 35

4.4 HISTOGRAM DESCRIPTOR . 37

4.5 TENSOR REPRESENTATION . 38

5 EVALUATION SETUP . 41

5.1 HUMAN ACTION RECOGNITION . 41

5.2 HARDWARE PLATFORM AND IMPLEMENTATION 42

5.3 DATASETS . 42

5.3.1 KTH . 42

5.3.2 UCF11 - YouTube Action Dataset . 43

5.3.3 Hollywood2 . 44

5.4 PARAMETER EXPLORATION . 45

5.5 Q-WISE METRIC LEARNING ADAPTATION . 48

6 RESULTS AND DISCUSSION . 50

6.1 SPARSE TRAJECTORIES . 50

6.1.1 KTH . 50

6.1.2 UCF11 . 56

6.1.3 Hollywood2 . 58

6.1.4 State-of-the-art . 59

6.2 METRIC LEARNING . 62

6.2.1 KTH . 62

6.2.2 UCF11 . 63

7 CONCLUSION . 65

REFERENCES . 68

14

1 INTRODUCTION

Movement description has been a challenging and popular research field over many years.

It is an area within computer vision and signal processing, but is also very close to machine

learning and pattern recognition. The challenges it poses in all of these disciplines, along

with its many potential applications draw the attention of researchers. It can be applied

to many real-life, human-centric problems like surveillance, health-care, and sports per-

formance analysis, as well as to video retrieval in databases, considering the growth and

popularity of recording devices. It is also a field that encompasses, and very frequently

is closely related, to Human Action Recognition (HAR), which is an area that provides a

plethora of databases and successful research to validate and compare one’s work. Very

often, movement description is used to recognize simple human activities, like running,

jumping, driving, etc. Complex activities require a certain level of abstraction or semantic

interpretation, like assaulting, playing, greeting, etc. These complex activities are espe-

cially hard to recognize using only motion information from a video, even though motion

is an important lead, and thus, are beyond what we aim to achieve in this work.

A very widespread procedure for activity recognition is to generate a collection of

descriptors (or feature vectors) from the videos, and use these descriptors as input for

a machine learning technique which classifies or separates them according to the action

portrayed, be it a Support Vector Machine (SVM) (CORTES; VAPNIK, 1995), Arti-

ficial Neural Networks (ANN), or any other classifier. In this work, we are interested

mainly on the first part of this framework, that is, how to generate a good description

for the movement in the video. We understand that this focus on describing movement

in videos is a justified effort in and of itself. Over the years, many different descriptors

were proposed, like Histogram of Oriented Gradients (HOG) (DALAL; TRIGGS, 2005),

Histogram of Optical Flow (HOF) (DALAL et al., 2006), Motion Boundary Histograms

(MBH), Divergence-Curl-Shear (DCS) (JAIN et al., 2013) with a multitude of variants

and combinations among each other.

These descriptors all rely on a characteristic of digital video representation. They all

compare adjacent frames of a video to obtain a form of gradient or flow of the brightness

values between them. Whether it is a very fine, pixel to subpixel-wise flow, like gradients

15

or optical flows, or a coarser one, subimage-wise, like our choice for this work: block

matching. The intuition behind these brightness comparisons is that the amount of time

that passes between two adjacent frames is little enough that it is safe to assume that

similar brightness configurations represent the same object or region in the scene. This

intuition is massively supported by the aforementioned works, considering they present

great results for their applications, to the point that it becomes a fundamental premise in

our work.

We also draw other premises from what has been evidenced by the works of Caetano

(2015) and Figueiredo (2015). Firstly, trajectories are very valuable to describe motion,

notably the use of dense trajectories by Wang et al. (2011). They provide richer move-

ment information than merely aggregating the result of comparisons of pairs of frames.

They allow for a greater coverage of the scene and its moving elements. A second as-

sumption we derive mainly from Mota et al. (2013) and Zelnik-Manor and Irani (2001)

is that tensors are able to synthesize the gathered movement information into a concise

form, keeping similar elements close in tensor space. We can also expect that, as it has

been heavily evidenced in both the state-of-the-art (WANG et al., 2013a) and our own

recent works (OLIVEIRA; VIEIRA, 2015; FIGUEIREDO et al., 2016), in conjunction

with histograms, block matching provides a fast computing, compact motion descriptor.

1.1 PROBLEM DEFINITION

The problem in this dissertation is to generate a descriptor to represent motion in image

sequences based in trajectories of elements that are invariant with respect to brightness.

This is a very harsh and brief definition of the problem, which we will clarify and detail

below.

The above mentioned invariance with respect to brightness is rooted in optical flow (GIB-

SON, 1950), and how the human vision perceives relative motion between objects in view

and the viewer itself. Horn and Schunck (1981), one of the earlier works with regards to

optical flow within the computer vision context, highlights how the apparent movement

of brightness patterns are important to determine the spatial arrangement and changes

in such arrangement for the objects in the scene.

The importance of the trajectories of said elements is also noted by Jain and Jain

(1981), when concerning video coding and compression, state that ”In practice, a signifi-

16

cant component of the motion in a scene can be approximated by piecewise translation of

several areas of a frame with respect to a reference frame.” (JAIN; JAIN, 1981, p. 1799)

In the context of this work, just as in Jain and Jain (1981), these elements are blocks,

namely subimages, in which the frames are partitioned. These blocks supposedly keep

the same disposition of pixel brightness values throughout a sequence of frames, hence

the name block matching. It is not required that these blocks are found in the same

position on subsequent frames, though. Quite on the contrary, in order to track motion

it is expected the blocks are found on distinct positions as we advance on the sequence of

frames, constructing the trajectories.

The solidity of these works, in their respective fields, gives rise to one hypothesis of

this dissertation: that trajectories consisting solely of block matching information can

produce a motion descriptor with efficiency and efficacy. By efficiency we mean the trait

of a descriptor that is both compact and fast computing. And by efficacy we mean the

characteristic of a descriptor of being representative of the motion and suitable for use in

application scenarios.

By requiring these properties of the descriptor, we are confronted with another prob-

lem, concerning the motion representation part of the definition. We must synthesize

the information from the trajectories into a compact form, given they alone represent

too much data to achieve the desired compactness. But, at the same time, a complex

processing to reduce the size of the descriptor, like a dictionary or bag-of-words approach

employed in (WANG et al., 2013a), would work against our other desired property of fast

computation. From previous research experience (OLIVEIRA; VIEIRA, 2015), aggregat-

ing the trajectories directly into histograms has been a viable choice. Therefore we arrive

at another hypothesis: that is, synthesis/dimension reduction scheme based on histograms

of relative displacements is able to aptly describe motion in a frame sequence.

In order to address the validation of the descriptor, by assessing how it fares in Human

Action Recognition, we venture into another problem, and a machine learning one, more

specifically that of classification. That is, given a population of samples divided into

classes (or categories), the system must identify to which class a new sample belongs.

This is done using the set of samples with known class assignments, named training set.

In this work, the samples for the classification problem are the video descriptors and the

classes describe actions portrayed in these videos, and the classifier of choice is a Support

17

Vector Machine (CORTES; VAPNIK, 1995).

Still in this matter of classifying the descriptors, we also employ a Metric Learning

method, as we hypothesize that it improves the separability of the data to be classified.

We are unable, in this work, to confirm or deny this hypothesis, although we still provide

data on the related experiments in Chapter 6.

To summarize, the three hypotheses of this work are:

• Trajectories consisting solely of block matching information produce a motion de-

scriptor with efficiency and efficacy;

• Histograms of relative displacements are able to aptly and synthetically describe

motion in a frame sequence;

• Metric Learning improves the compactness and separability of motion descriptors

in feature space for classification.

1.2 OBJECTIVES

The main objective of this work is to describe apparent motion adequately and efficiently,

that is, to obtain a compact, low computational cost, effective descriptor for motion.

Remark that this objective is very much in line with one of the hypotheses of this work.

By pursuing a descriptor designed with these characteristics, we are able to produce

evidence, through experimental results, to substantiate our hypothesis.

As a secondary objective and a way to validate our descriptor, we evaluate its use in

the context of Human Action Recognition. We obtain motion descriptors that are both

competitive, in terms of recognition rates for HAR, and fast computing.

To achieve this objective, we make several choices for simplicity’s sake. As we’ll explore

more in the related works chapter, many authors, including those whose works are the

state-of-the-art, employ pyramidal sampling, multiple feature descriptors, fine granularity

flows, object of interest segmentation, local features, to cite a few. All of these approaches,

although being able to achieve very high recognition rates, are very costly concerning

computational resources.

As another secondary objective, we also aim to assess the influence of Metric Learning,

specifically the quadruplet-wise method proposed by Law et al. (2013), in the context of

Video Human Action Recognition. For that matter, we explored the inclusion of it right

18

before the classification part of our process, as a way of improving the compactness and

possibly the separability of the descriptors.

19

2 RELATED WORKS

The descriptors by Wang et al. (2011) are based on trajectories of feature points. These

feature points are densely sampled and tracked based on displacement information from

the dense optical flow algorithm of Farnebäck (2003) on multiple spatial scales. Local de-

scriptors are then computed within space-time volumes around trajectories using HOG,

HOF, MBH, or a combination of them. These local descriptors are used to build a code-

book in a standard bag-of-features approach. Their work presents very high recognition

rates for the three datasets used in our evaluation, KTH, UCF11 and Hollywood2. Wang

et al. (2013b) later improve on this method, using camera motion estimation, a human

detector, and a different encoding scheme. Wang et al. (2013b) also use three other

datasets: HMDB51, Olympic Sports, and UCF50. The descriptors built with our method

differ from these ones cited on several of aspects. Our descriptor is global, that is, the

information that composes it comes from whole frames, and not just close vicinities of

a point of interest or feature. Moreover, our descriptor for a given sequence does not

rely on information from the descriptors of other sequences, since no bag-of-words, Fisher

Vectors or any other similar encoding is employed during the descriptor construction1.

This independence from information from other sequences makes our descriptor what we

call a self-descriptor. All the necessary information to describe the motion in a scene is

assumed to be contained solely in the scene itself.

Wang et al. (2015) propose a novel video descriptor, called trajectory-pooled deep-

convolutional descriptor (TDD), which the authors regard as benefiting from both hand-

crafted features and deep-learned features. The hand-crafted features extracted are dense

trajectories from Wang et al. (2013b) combined with Fisher Vectors (SANCHEZ et al.,

2013). The deep-learned features are obtained through Convolutional Networks (Con-

vNets). Their results show that TDDs outperform previous state-of-the-art hand-crafted

features and deep-learned features in the datasets used: HMDB51 and UCF101.

Tensors are powerful tools to agglomerate information, that have been used in many

different works in the pattern recognition area over recent years, especially within the area

1The Metric Learning procedure used in part of this work contradicts that, but the descriptors them-
selves are independent from each other. Moreover, being still an incipient aspect of our research, the
Metric Learning approach is complementary in this work, and not its main contribution.

20

of this work, that focus on describing motion. Mota et al. (2012) use optical flow projected

on Legendre polynomials and aggregate the resulting coefficients into orientation tensors.

This approach produces a global descriptor. In this work, as mentioned, the descriptor

is also global and the descriptor is also represented as a tensor. However, a scheme

more similar to ours is presented in Perez et al. (2012). In their work, three dimensional

HOG (HOG3D) (KLÄSER et al., 2008) is used to extract motion information between

frames, then the vectors are aggregated into two dimensional histograms, and finally the

histograms are combined into orientation tensors. The work of Perez et al. (2012) differs

from ours regarding its use of very fine flow of brightness (HOG3D), three dimensional

tensors, and the lack of trajectories. Mota et al. (2013) also employ HOG and aggregate

its results using both histograms and tensors, but many tensors are computed for each

frame, which are partitioned in a grid structure. The final descriptor for a frame is the

concatenation of the tensor descriptors computed in each cell of the grid.

Tensors have also been recently used in action recognition using 3D skeleton represen-

tations, instead of RGB camera information, as in the work by Koniusz et al. (2016). The

authors use tensors to capture higher-order relationships between skeleton joints, model-

ing both the compatibility between joints in one sequence with joints in another sequence,

and the action dynamics of a sequence. Their tensors computed from these models are

classified using an SVM. Such a work has little practical connection with our own, but

it serves to indicate how tensors can be valuable to encode information in the motion

description field.

Two other works make use of both trajectories and tensors, the ones by Caetano (2015)

and Figueiredo (2015). Caetano (2015) extracts dense trajectories much like Wang et al.

(2011), but proposes a descriptor based on the cross product between the local trajec-

tory displacement and gradients on surrounding windows. Additionally, the trajectories

by Caetano (2015) are clustered by shape using the k-means algorithm. That is, they are

represented as vectors of angles between displacement vectors composing the trajectory.

The author argues that this makes the trajectories comparable regardless of their direc-

tion in the frame. The author also argues that by doing so, camera movement is easily

detected and instead of being discarded, it is instead represented in one of the clusters,

adding to the information about the scene. The final descriptor in his method is the

concatenation of the tensors for each cluster. The work by Figueiredo (2015) also follows

21

this scheme from Caetano (2015), with the cross product, shape representation, trajectory

clustering, and final tensor representation. But instead of dense trajectories, the author

extracts sparse trajectories using block matching, exploring three different approaches to

this extraction.

Jain et al. (2013) propose a decomposition of visual motion information into dominant

and residual to improve action recognition algorithms. Their method works on top of

existing techniques in the area, so dense trajectories, HOF, HOG, and MBH are used

to obtain the motion information. They also propose a new motion descriptor, Diver-

gence Curl Shear (DCS), and explore the combination of their novel descriptor with those

already available.

Another method that is compatible and complementary to local motion and appear-

ance based methods is the one by Fernando et al. (2015). But instead of relying on the

apparent movement of elements in a scene, it uses a rank machine to sort the frames

of a scene temporally by their appearance. The parameters of the ranking functions

learned serve as the new video representations for classification. The authors argue that

a ranking function capable of sorting the frames is also able to capture the evolution of

appearance in the video. They also consider their own method to be easy to interpret

and implement, fast to compute, and effective in recognizing different kinds of actions. In

their evaluation, they use diverse datasets, Hollywood2 and HMDB51 for generic actions,

MPII-cooking activities for fine-grained actions and Chalearn for gestures.

The work of Jain et al. (2015) also takes an alternative path to action recognition.

Instead of using motion as the key information, they detect known objects and use them as

indicative of which action is being performed. The authors show, through their empirical

study, that objects are semantically relevant for actions. Their combination of objects and

motion information also improves the state-of-the-art for both action classification and

localization. To detect objects, they compute the likelihood of the object categories being

present in each frame of the videos using a convolution network. The object categories

are built with samples from the ImageNet dataset, amounting to 15000 object categories.

Other works in the area include those by Schuldt et al. (2004), Liu et al. (2009)

and Marszalek et al. (2009), which not only propose their own action recognition methods,

but also made available the KTH, UCF11, and Hollywood2 datasets, respectively.

Related works concerning Metric Learning are mentioned along with its fundamentals

22

in Section 3.3, to present its context and its variety of applications.

23

3 FUNDAMENTALS

This chapter provides some basic concepts with the purpose of allowing a better under-

standing and clarifying some terminology of the following chapters of this work.

3.1 BLOCK MATCHING

Block Matching (JAIN; JAIN, 1981) is a method for tracking elements along sequences

of images. It was conceived in the context of video encoding and compression, with

the objective of minimizing the amount of data sent through the network of a video

conference system or stored in a video file. This is done by partitioning a frame into

blocks, then estimating the displacement of each individual block by the comparison of

its brightness values with those in a neighborhood of the block in the following frame.

Having this estimate, instead of transmitting (or storing) whole frames, one frame could

be transmitted whole, as a reference, and then only relative displacements along with very

distinct portions of following frames would be necessary to represent them. In order for

this scheme to work properly, there is the assumption that if there is continuous motion

in an image sequence, several blocks from one frame can be found in the next one, but in

slightly different positions.

In more formal terms, the process consists in partitioning a frame f (n) into M rectan-

gular blocks and finding, for each block, the displacement vector tuple

(d(1),d(2), ...,d(S))(n)m , m ∈ [1,M], (3.1)

corresponding to its trajectory in a sequence of consecutive frames (f (n), f (n+1), ..., f (n+S))

of a video, where S is the size of the trajectory. This size could vary in other applications,

from block to block being tracked. However, in this work, S has a fixed predetermined

value. This tuple is obtained by finding the neighboring block that minimizes some error

function ε, so

d(t) = (b(t+1)
x − b(t)x , b(t+1)

y − b(t)y) s.t. min
b(t+1)
{ε(b(t),b(t+1))}, t = 1, ..., S. (3.2)

In the equation above , b = (bx, by) denotes the coordinates of a block b in the frame and

24

the error function ε takes the coordinates of two blocks to compare and returns a single

real value. Should the blocks at b(t) and b(t+1) have similar brightness configurations, the

value of ε will be near zero and the displacements will provide a good representation of

the motion along the frame sequence.

There are two block matching components that call for discussion: error function and

search strategy. The error function is the sole criterion for block matching to judge the

similarity between two blocks. In this work, we employ the Sum of Absolute Differences

(SAD) as the error function. Although other error functions could have been used, like

Mean Absolute Differences (MAD) or Normalized Cross-Correlation (NCC), we chose

SAD, as it is the simplest and fastest. Moreover, our previous research experimentations

indicate that the choice of error function causes little to no impact on the performance of

our descriptors. The SAD is defined as:

DSAD(B) =
∑
x,y∈B

|f (n)(x, y)− f (n+1)(x, y)|, (3.3)

where f (n)(x, y) is the brightness value of coordinates (x, y) in frame f and B is the set

of pixel coordinates in a given block.

The search strategy is the part of block matching most responsible for its fast com-

putation. It is the sequence of steps the block matching procedure takes to find the best

match for a block, that is, the block in the next frame with the least error function value.

Searching a whole frame for a block is prohibitively expensive in terms of computation

time. So the search is restricted to a window, a neighborhood around the block to be

matched. This is done under the assumption that objects in the scene move continuously.

Even so, the search window alone is not enough to optimize the speed of block matching.

So a sequence of steps, usually a gradient descent-like procedure is also used. A number of

approaches for this procedure have been proposed over the years, like Li et al. (1994), Po

and Ma (1996), and Zhu and Ma (2000). In this work, we chose the Four Step Search

(4SS) (PO; MA, 1996) due mainly to its fast computation and easy implementation. 4SS

is a gradient descent based search strategy which limits the amount of computation to find

optima in a close vicinity. Even though the use of a search strategy has a great impact on

the running time of block matching, the choice of which search strategy to use seems to

have no influence in the descriptor performance, as we could also investigate in our past

25

experience.

3.1.1 VARIABLE SIZE BLOCK MATCHING

Recognizing the advantages of block matching for compression, Puri et al. (1987) and

later Chan et al. (1990) developed it even further by proposing variable size block match-

ing (VSBM). Both the conventional block matching and VSBM start out the same way,

with the partition of the frame into equally sized blocks. But instead of keeping this

configuration throughout the whole computation, VSBM blocks can be split into smaller

blocks or merged into bigger regions, possibly even non-rectangular ones. The criteria

for when to split or merge blocks are varied, but are often related to the matching error,

the displacement vector, or some measure over brightness intensities, like in picture seg-

mentation (HOROWITZ; PAVLIDIS, 1976), where the variance of the brightness is taken

into account. The blocks can be split in two or four new blocks, giving rise to a bin-

or quad-tree structure, where leaf nodes are blocks of varied sizes (Figure 3.1). Ideally,

the block boundaries would coincide with those of moving objects in the scene, and thus

provide a good approximation of the optical flow, but at a coarser granularity.

1

2 3

4

5

6

7 8

9 10

(a) Bin-tree structure

1

2

3

5

6

7 8

4 9 10

(b) Corresponding frame partition

Figure 3.1: Block matching bin-tree structure and corresponding partition of a frame.
Figure adapted from Chan et al. (1990).

In our implementation, for the sake of simplicity and lower computational cost, only

split operations are allowed and they are carried out when the matching error is above

a fixed threshold parameter. That is, after finding the best match for a block, if the

matching error is above said threshold, the block is split in smaller blocks and the matching

26

is computed for them. If the matching error for any of these smaller blocks is still above

the error threshold, the process continues recursively, by splitting the block into two and

attempting to match the new ones. This recursion stops when the error is below the

threshold or the sizes of the blocks reach a pre-established minimum size. Even though

we do not implement merge operations, if the sum of the matching errors for two new

blocks is larger than the matching error of the original block, we allow for an ”undo”, and

keep the original block instead of the split smaller blocks.

3.2 ORIENTATION TENSOR

Orientation tensors are a particular type of tensor, that have properties that allow for the

representation of a three-dimensional surface and its orientation in space. In the work

of Knutsson (1989), it is shown how to map local brightness correlations into an orientation

tensor, that is, 1-D lines (or similar structures) into a 3-D surface. As Knutsson (1989)

puts, a suitable mapping should meet three basic requirements: uniqueness, uniformity,

and polar separability. This is specially useful in this work when it comes to building the

final descriptor. More on that can be found in Section 4.4. We’ll now focus on the tensor

itself, summarizing its definition, terminology, and some properties, as discussed in depth

in the works by Knutsson (1989) and Westin (1994).

Let V be a linear space with its dual denoted as V∗. A tensor of order (p, q) may

be defined as a multi-linear mapping, that is, a mapping that is linear in each of its

arguments:

T : V∗ × V∗...× V∗︸ ︷︷ ︸
p

×V× V...× V︸ ︷︷ ︸
q

→ (3.4)

From this definition, a vector is a (1, 0) tensor, and (2, 0), (0, 2), and (1, 1) tensors can

be represented by matrices. Note that since p and q determine the number of indices, the

order of a tensor is not related to the dimension of the vector. A tensor of order (2, 0)

can be represented by a 2× 2, a 3× 3 or even larger matrix, for instance.

As for the mapping and its required properties we have:

• Uniqueness:

T(x) = T(−x), (3.5)

where x is a vector in the original space and T is the map of x.

27

• Uniformity:

‖δT‖ = c ‖x‖r=const. , (3.6)

where δ denotes first order approximations r = ‖x‖ and c is a ”stretch” constant,

meaning that the mapping locally preserves the angle metric of the original space.

• Polar separability:

‖T‖ = f(‖x‖), (3.7)

where f : R→ R, meaning the norm of T is independent of the direction of x.

A mapping that maps the vector x onto the tensor T, all the while presenting the

above properties is given by:

T = xx>, (3.8)

with its norm taken to be the Frobenius norm:

‖T‖2 =
∑
ij

t2ij, (3.9)

where tij are the components of T.

Take special note of Equations 3.8 and 3.9, as they play an important role in our

descriptor generation (Section 4.4).

3.3 METRIC LEARNING

Consider a scenario in which we are required to compute the similarity or distance be-

tween pairs of video sequences regarding their content. For that, it is important to know

how to measure the distances. For instance, if the goal is to identify and match human

actions, then we should choose a distance function that highlights certain features, like

limb movement, interaction with other people and/or objects, etc. If the goal were to

identify videos portraying natural landscapes, we would clearly rely on other features,

like presence of trees or sky visibility. Instead of determining by hand an appropriate

distance function for each of these cases, we could employ metric learning, which is an

automated and supervised way to learn these task-specific distance metrics. The goal of

metric learning is to find a matrix for a Malahanobis-like distance that best emphasizes

whatever features are important.

28

Plenty of works have contributed over recent years, with a vast array of variants,

extensions, and applications for metric learning. Possibly the most well known work is

that of Xing et al. (2003), which poses the problem as a convex optimization problem.

Their main application was to improve clustering by learning the distance function prior

to clustering the data. Schultz and Joachims (2004) take an approach similar to the soft-

margin SVM problem, in which by choosing the metric matrix to be diagonal, it becomes

a vector of feature weights. The optimization then involves a quadratic objective over

the feature weights, along with the hinge loss applied to a linear function of the feature

weights. Weinberger and Saul (2009) proposed one of the most popular metric learning

methods: Large Margin Nearest Neighbors (LMNN). The intuition behind it is that a

data point should have the same label as its nearest neighbors, which is enforced by a

relative distance with margins between points with different labels. Davis et al. (2007)

method, named Information-Theoretic Metric Learning (ITML) introduce a regularizer

which provides a distance function with scale and translation invariance, along with some

other properties. Law et al. (2013) formulate metric learning based on quadruplets instead

of pairs, to better assess the relations of similarity and dissimilarity. Their applications

include image retrieval and an analysis of web page contents disposition. Other works

containing metric learning in computer vision include: Guillaumin et al. (2009) for face

recognition, and Tran and Sorokin (2008) for action recognition. Other general applica-

tions are: text analysis (DAVIS; DHILLON, 2008), music analysis (SLANEY et al., 2008)

and even program debugging (HA et al., 2007).

The metric learning formulation made popular by Xing et al. (2003), consists in ob-

taining a Malahanobis-like distance:

D2
W(xi,xj) = (xi − xj)

>W(xi − xj),W � 0, (3.10)

where W ∈ Rd×d is a symmetric positive semi-definite (PSD) matrix (W � 0) and

(xi − xj) ∈ Rd × Rd are representations of the objects one wants to measure distances

between.

In pairwise approaches, like Xing et al. (2003), W is learned by optimizing D2
W on a

training set partitioned into subset S, of similar points, and subset D, of dissimilar points.

29

The objective function is then defined as:

min
W

∑
i,j∈S

DW(xi,xj) s.t.
∑
i,j∈D

DW(xi,xj) ≥ 1,W � 0, (3.11)

as a way to minimize the distance between similar points, while keeping dissimilar points

away by a margin. This is done to support clusterings, classifications, rankings, and any

other problem whose solution benefits from differentiating samples or instances through

a dissimilarity function.

3.3.1 Q-WISE METRIC LEARNING

A metric learning extension and its application in computer vision deserve special atten-

tion. The quadruplet-wise formulation for metric learning (LAW et al., 2013), based on

the relative attributes approach (PARIKH; GRAUMAN, 2011), has not yet been thor-

oughly explored in activity recognition (ZHANG et al., 2015). As claimed by Law et al.

(2013), it is more useful to assess the similarity as two images are more similar than two

other images relations, rather than binary labels establishing that they are considered

equivalent. For that matter, quadruplet-wise approaches compare pairs of similarities

(Dij, Dkl)
1, which in turn require four different points (xi,xj,xk,xl).

The Malahanobis-like metric matrix W, in Q-wise Metric Learning can be learned in

one of two contexts, which Law et al. (2013) bring to attention, to avoid both an expensive

computation and overfitting:

• W is diagonal: diag(W) = w, so that W is PSD iff w ≥ 0. In this case the metric

acts as a scaling of the components of x.

• Optimization over rows: W = L>L, with L ∈ Rc×d, with possibly c ≤ d. In

this case, each one of the c rows of L represents an attribute, and can be learned

independently.2

In both cases, we can refer to the parameters to be learned as a vector w. Let

zq be the vector of differences of the quadruplet q = (xi,xj,xk,xl), or zq = zijkl. So

DW(xk,xl)−DW(xi,xj) = w>zq. These quadruplets compose two sets of constraints, A

1The notation Dij in this section is merely shorthand for D(xi,xj)
2This second case is the one that draws our interest, as we adapt this method to make a classification.

This is further discussed in Section 5.5.

30

and B, with the goal of learning the parameters of Dw satisfying the maximum number

of said constraints.

∀(xi,xj,xk,xl) ∈ A | Dw(xk,xl) ≥ Dw(xi,xj) + 1 (3.12)

∀(xi,xj,xk,xl) ∈ B | Dw(xk,xl) ≥ Dw(xi,xj) (3.13)

The constraints on set A consider a margin between samples, while the ones in B do not.

The objective function is then defined as:

min
w

∑
q∈A

Lh1(w>zq) +
∑
q∈B

Lh0(w>zq) + λ‖w‖22 (3.14)

where Lh1 is a differentiable approximations of the hinge loss when the parameter h→ 0,

inspired by the Huber Loss function. Lh0 is an adaptation of Lh1 without the safety margin.

The last term is a regularization term tuned by a parameter λ to avoid overfitting.

On the matter of obtaining constraints, the work of (LAW et al., 2013) is largely based

on the relative attributes from (PARIKH; GRAUMAN, 2011). This approach consists

on loosely ordering quadruplets according to the presence of a desired attribute. Let

q = (xi,xj,xk,xl) be a quadruplet with samples from four different classes: xi ∈ E, xj ∈

F, xk ∈ G, xl ∈ H. Also let the presence of an arbitrary attribute be such that the

classes are ordered as follows: E ≺ F ≺ G ≺ H. Then it follows that q ∈ A as a constraint

Dw(xi,xl) ≥ Dw(xj,xk) + 1. Were the classes F and G somewhat indistinguishable in

terms of the attribute in question, the ordering would be E ≺ F ∼ G ≺ H and the

constraint q ∈ B, such that Dw(xi,xl) ≥ Dw(xj,xk). Notice that the first and last

samples (xi,xl) are less similar than the second and third ones (xj,xk) according with

the ordering, and thus the former pair have a greater distance between themselves than

the latter pair.

Once the matrix W is learned, more specifically L, the samples xi can be represented

through the presence of each relevant attribute, in a high level representation: hi = Lxi.

This representation is interesting in our work, since it greatly improves the compactness

of our descriptors. More in Section 6.2.

This approach could be translated to the video context, by comparing actions instead

of image characteristics. Even though it is hard to determine or quantify whether a certain

action is being performed more or less, the intuition behind the quadruplet relations still

31

holds. That is, it is easier to assess how similar is a pair in relation to another pair of

videos. The introduction of the paper from Law et al. (2013) provides a brief and clear

explanation using static images and the presence of ”smile” in them. An adaptation of

the same method to HAR is proposed in this work in Section 5.5.

32

4 PROPOSED METHOD

In this chapter, we present the method implemented throughout the research and its

specifics. Section 4.1 provides an overview of the proposed method. Section 4.2 explores

the relationship between elements of our method and the hypotheses of this work. Some

of the concepts and how we address them have been already noted previously in this

dissertation, especially in Chapter 3. The following sections: Section 4.3, Section 4.4,

and Section 4.5 focus on details for each element of our method and how they are tied

together.

4.1 METHOD OVERVIEW

(a) Frame sequence. (b) Block displacements. (c) Block matching result.

0°

45°

90°

135°

180°

225°

270°

315°

5
10

15
20

25
30

35

(d) Histogram. (e) Tensor representation. (f) Classification.

Figure 4.1: Method overview. Each part of our method is represented in a simplified
manner, mainly to illustrate how straightforward the approach is. (a) shows a sequence of
frames. (b) shows the computation of block matching displacement vectors. (c) illustrates
a frame with its displacement vectors. Trajectories are build by matching blocks iteratively
for each pair of successive frames in the sequence. (d) shows the histogram of directions
for a single frame. (e) shows the tensor representation for the histogram circled in red. (f)
depicts a classification scheme where each region separated by the dashed curves possibly
represent a different action in the sequence.

Figure 4.1 shows an overview of the method. It highlights the simplicity of the

method, meaning how straightforward the approach is. First, the collection of frames

(Figure 4.1(a)) from which the trajectories are extracted. In Figure 4.1(b) and Fig-

33

ure 4.1(c), the block displacements between a pair frames are shown. The trajectories are

built by concatenating the vectors outputted by successive block matchings. Then, the

trajectories are aggregated into a histogram descriptor (Figure 4.1(d)) for each frame. The

histograms then assume a tensor representation. In the figure, many are shown, but the

one that corresponds to the histogram depicted is the one circled in red in Figure 4.1(e).

The tensors are summed up, so there is a single tensor for the whole sequence1. Finally,

for the sake of validating our descriptors, they undergo a classification (Figure 4.1(f)).

We expect that similar actions depicted in a video are reflected as tensors nearby each

other in the classification space, as the figure suggests.

4.2 METHODOLOGY

This section presents how the hypotheses were elaborated throughout the development of

this work and what were the main questions that arrived.

Our first hypothesis has two main aspects we must address: block matching and

trajectories.

Block matching comes from works in the video encoding and compression field. Re-

search about it is rooted in the dissemination of media content, specially television, back

in the 1970’s decade. It has been a topic of interest ever since, particularly now, that the

Internet has taken place as the main instrument of this dissemination of video content.

To conceive this work, however, we were interested in investigating how block matching

could be used as a low-cost flow of brightness patterns. We surmise that most of the works

which also have the objective of describing apparent motion, employ some form of flow

that is highly demanding, in terms of computational resources. These often are based on

gradients, feature point matching, or optical flow. Not only that, but pyramidal sampling

of the frames, background subtraction, bag-of-words and other techniques are frequently

used. These all tend to greatly decrease the speed of computation.

The rationale behind the use of trajectories was much simpler. We just aim to follow

the state-of-the art of the human action recognition field, which extensively employs dense

trajectories. Once again, guided by simplicity and efficiency, we confronted the question

of how to build a lower cost trajectory scheme.

1The tensors are depicted as ellipsoids for illustrative purposes. The actual tensor dimension is much
greater than 3.

34

An important remark is that this regulating idea of simplicity, efficiency and low cost

of computation is not desultory. We account, through the available literature for motion

description, that a great deal of works, employ an array of techniques and methods with

little to no regard to their complexity. In fact, very few works report any kind of speed or

efficiency metrics, or at least take into consideration using simpler, faster, more scalable

methods. Although we are not unaware of the high quality of these works, we consider

this lack of efficiency evaluation to be hurtful to their application capabilities.

With all that in mind, we decided to go in the alternative direction of approximating

the quality of other motion descriptors, while having a much simpler body of procedures.

Hence the first hypothesis of this work.

The hypothesis concerning histograms was conceived considering how there is a con-

sensus that histograms are great dimensionality reduction tools. This is evidenced by

several works of great relevance in the motion description area that use histograms. No-

tably Dalal and Triggs (2005) and Dalal et al. (2006), whose contribution is part of many

of the works in the area ever since.

Histograms of direction are discriminative of the exact information of our interest:

orientation, direction. They also have the added benefit of always having the same size,

regardless of how many trajectories we have, or how long they are. Furthermore, using

trajectories directly as the descriptor or directly into tensors would lead to a final descrip-

tor orders of magnitude bigger than the one we currently compute using histograms. On

top of that, this approach with no regard to the compactness of the final descriptor could

still provide only a marginal gain, or even no gain at all, in terms of motion representation.

Histograms have also been of great avail in works within our research group, like

in Perez et al. (2012) and Mota et al. (2013). So, for all these reasons, we decided to

investigate their use in our own context of motion description, using block matching

displacements.

The idea of using Metric Learning influences the validation part of our method. For

this validation, we employ some kind of machine learning technique to differ between de-

scriptors of each type of action portrayed in the sequences. In other words, the descriptors

are classified into action categories. In order to classify these descriptors, there must be

a way to measure the similarity (or dissimilarity, or distance) between each other. Our

descriptors are essentially vectors in a high-dimensional Euclidean space, and we assume

35

that vectors are nearby each other whenever they represent the same kind of motion. So

we turned to Metric Learning as a way to capture the disposition of the vectors and build

a distance function for said space in a way that the similarity/dissimilarity relations are

highlighted.

4.3 TRAJECTORIES

The extraction of the trajectories is the first and most visually oriented part of our method.

We construct the trajectories as described in Equations 3.1 and 3.2 in Section 3.1. First,

a frame is partitioned into blocks of equal size. Then, between the first two frames of

the trajectory, a new configuration of blocks emerge through VSBM. From the second

frame onwards, until the last frame of the trajectory, the sizes of the blocks remain the

same. That is, the partitioning of the frame is kept throughout the remainder of the

trajectory and regular block matching is used to track the blocks instead of VSBM. To

chain together the outputted displacements into a trajectory, the target block of a previous

match is used as reference for the following matching. Also, regardless of the size of the

trajectory, every frame serves as a starting point for a new set of trajectories. This is

illustrated in Figure 4.2, where two distinct trajectories are calculated from the different

partitions of two adjacent frames.

The experiments of Figueiredo (2015) provide some evidence that it is not necessary

to use VSBM for every matching, since the results show no substantial improvement for

using it so. Not only that, but using VSBM in every matching would cause the blocks

to diverge and thus introduce more noise instead of relevant motion information. Also,

very frequently the blocks would reach the minimum block size, since there was no merge

operation. This would cause the method to lose one of its main characteristics: fast

computation, since VSBM can be more demanding in the extreme case of a high number

of small blocks per frame. By adopting VSBM for only the first pair of frames of the

trajectory and block matching (BM) onwards, the speed of the overall procedure does

not take a severe toll, while benefiting from a block configuration for the trajectory that

approximates the boundaries of moving elements in the scene.

The reasoning behind this trajectory overlap scheme is that redundancy can increase

the reliability of motion information, by diminishing the prevalence of noise. Should an

object enter or exit the frame mid-trajectory, or if the sequence were to have distinctive

36

Frame n Frame n+1 Frame n+2 Frame n+3

...

......

...

Figure 4.2: Example trajectories with size S = 3, starting at frames f (n) (top) and f (n+1)

(bottom). On the top sequence, an object is tracked from f (n) to f (n+2) with the same
partition. On the lower sequence, another block, originated from a distinct partition, is
tracked from f (n+1) to f (n+3). In this case, the partition is the one resulting from the
match between f (n+1) and f (n+2).

shots or cuts, the trajectories would be very likely to carry erroneous motion information,

since the assumption of continuous motion would be toppled. By partially overlapping

multiple trajectories, these errors have less impact on the overall accumulated motion

information. Additionally, this redundancy scheme reinforces the idea that VSBM is

not necessary for all the matchings. In the works of Wang et al. (2011), Wang et al.

(2013a), and Caetano (2015), the trajectories have no overlap. In fact, in their methods,

new interest points to spawn trajectories are extracted at each frame, but if a new point

matches another point already in a trajectory, it is not taken into account. This essentially

filters out trajectories with any overlapping.

Also differently from the dense trajectories of Wang et al. (2011), and Caetano (2015),

the trajectories extracted through VSBM are sparse, in the sense that there are fewer

trajectories per frame. This means a coarser representation of the motion in the scene

compared to dense or keypoint sampling, but this smaller set of trajectories still possibly

carries interesting motion information. Our evaluation of the method provides evidence

towards this, as we achieve results that are marginally below those of the state-of-the-art

in the area in experiments with the KTH dataset.

The extraction of the trajectories introduces some parameters and implementation

decisions to our method. From VSBM, they are: initial block size (width/height in

37

pixels), minimum block size, search strategy and error function used, error threshold, as

well as whether to split blocks into two or four new ones. From the trajectory itself, we

have its length (in frames). Some of these we have managed to identify as having very

little to no impact at all in our results through preliminary experiments. And so for these

parameters or aspects of the algorithm, we made choices envisaging simplicity, by way of

ease and clarity of implementation, and fast computation.

Whenever the blocks are split, two new ones are created. As for minimum block size,

we chose 4 × 4, to obtain a motion representation at most as dense as the largest scale

of Wang et al. (2011) and Caetano (2015), where feature points are sampled on a grid

spaced by 5 pixels2. For the search strategy and error function, we chose 4SS (PO; MA,

1996) and SAD, respectively, as previously stated.

4.4 HISTOGRAM DESCRIPTOR

Once the trajectories have been computed, we proceed to computing the descriptor. Even

when employing sparse trajectories, the raw trajectories are still to much data to store

directly as a descriptor. So a histogram of directions is used to summarize the motion

information.

First, to clarify the notation, consider the indexes: n ∈ [1, N] for the frame, t ∈ [0, S]

for the displacement vector in the trajectory, and m ∈ [1,Mn], for the number of blocks

in a partitioned frame.

The input for these histograms are displacement vectors that compose the trajectories,

and for that the vectors are first converted to equivalent polar coordinates. Let d
(n+t)
m =

(dx, dy)
(n+t)
m be the tth displacement vector of the trajectory associated with the mth block

of a given frame n through one of the matchings. In polar coordinates, d
(n+t)
m is denoted

as d
(n+t)
m = (θ, r)

(n+t)
m , where θ = tan−1(dy

dx
), θ ∈ [0, 2π] and r = ‖d(n+t)

m ‖.

The histogram h(n) for frame n is then defined as h(n) = (h1, h2, ..., hPθ)
>, where Pθ

is the number of bins for the θ coordinate of the vectors. The subdivision of the angle

interval is uniform, that is, these bins are evenly spaced. The magnitudes for each bin are

given by:

h(n)p =

M,S∑
m,t

r(n+t)m · ω(θ), (4.1)

2Still, a situation in which the whole frame would be partitioned into 4 × 4 blocks is highly unlikely
to occur, considering the characteristics of natural videos.

38

where p ∈ [1, Pθ], and ω(θ) is a Gaussian weighing factor, that adds part of a vector

magnitude into neighboring bins. The closer to a interval boundary, the greater the

contribution to the neighboring bin. In our experiments, this Gaussian factor has mean

µ = 0 and standard deviation σ = 0.01, meaning that only vectors very close to bin

boundaries in terms of direction, contribute to more than one bin. Note, through the

indexes of the summation, that all the displacement vectors that compose trajectories

starting in frame n are used to build the nth histogram of directions h(n). The number of

bins Pθ is a parameter of our method.

(a) Motion vectors/displacements.

0°

45°

90°

135°

180°

225°

270°

315°

5
10

15
20

25
30

35

(b) Corresponding histogram of directions.

Figure 4.3: Frame with motion vectors and its corresponding histogram of directions. To
avoid clutter, only one motion vector per block is shown, and not entire trajectories.

4.5 TENSOR REPRESENTATION

A histogram could be used directly as the final descriptor, by taking the average or the

concatenation of all frame histograms. Or it could, for example, be used in a bag-of-words

method like in Wang et al. (2013a). However, a tensor representation is an interesting

way to summarize motion information while easily retaining relations of similarity. And

for that reason, we compute orientation tensors from our histogram motion descriptors as

explained below.

Once we have histograms for all the N frames of a video sequence, we summarize them

once again into a single final descriptor for the video sequence. For that, we first compute

39

a tensor T ∈ RPθ×Pθ for each frame, defined as:

T(n) = h(n) · h(n)>. (4.2)

Individually, T(n) holds the same information as h(n), but tensors can be combined to

highlight component covariances. This combination, in our case, is an averaging of the

tensors for all frames of a video sequence. The final descriptor for a given video sequence

is then defined as:

T =
N∑
n

T(n)

‖T(n)‖
(4.3)

where the norm ‖T‖ is the Frobenius L2 norm, as cited previously in Section 3.2. By

normalizing the tensors, we are able to compare sequences of different lengths and resolu-

tions. Longer sequences or ones with higher resolutions would tend to have corresponding

histograms with bins containing higher accumulated values, even if there was much less

overall movement in said sequences. The normalization counteracts that and brings all

the information into the same scale for comparison.

Two other properties of tensors are of great importance for our descriptor, as we

want to have as much information from the trajectories as possible in a concise form.

One is that, while vectors are representative of only one direction (that of the vector

itself), tensors hold information of many directions. This essentially justifies the use

of this tensor representation instead of using of just histograms as the final descriptor.

In order to have available the information of all the histograms in their own form, we

would have to concatenate them, as they are able to represent only one direction in RPθ .

As with an orientation tensor in RPθ×Pθ we have all N histograms from a sequence as

line elements in RPθ mapped into a surface in RPθ×Pθ . Figure 4.4 shows an illustration of

three-dimensional second order tensors and how their shape represent the relation between

directions encoded within them (KINDLMANN, 2004).

Note also that there is no increase in dimensionality between a tensor for a single frame

and a tensor for all frames of a sequence. Both T(n) and T are in RPθ×Pθ . Although this

comes with a drawback that is brought up by Mota et al. (2013). If too much divergent

information is accumulated on the tensor, it becomes isotropic (the one on the top-most

part of Figure 4.4) and thus it does not hold meaningful motion information.

The other property of tensors of importance for this work is that the tensor has the

40

Figure 4.4: Illustration of three-dimensional second order tensors. Tensors with one preva-
lent direction on the bottom left, two prevalent directions on the bottom right, and all
three (or without) prevalent directions on the top (KINDLMANN, 2004).

form of a positive semi-definite matrix. This means that in order to store it, only its upper

triangular coefficients are needed. So instead of storing the whole matrix, with Pθ × Pθ
coefficients, only Pθ × (Pθ+1

2
) coefficients are actually stored.

41

5 EVALUATION SETUP

This chapter contains the resources and some of the process behind our experiments. We

evaluate our descriptors by their application in Human Action Recognition, as discussed

in Section 5.1. Section 5.3 presents the datasets used in our evaluation, as well as some

comments on their characteristics. Section 5.4 shows how we have explored the parameters

of our method, for reproducibility’s sake. Section 5.5 presents how we have adapted the

Quadruplet-wise Metric Learning method into the context of our evaluation.

5.1 HUMAN ACTION RECOGNITION

Consider a set of video sequences containing actions being performed by people. The goal

of Human Action Recognition (HAR) is to identify the actions or possibly the intents of

one or more human agents in a scene. In fact, the problem consists in labeling these videos

according to the actions portrayed. This topic attracts great interest due to its many

potential applications. For instance, suppose an application to search or index videos

automatically. In this application, the labeling could signal the presence of a certain kind

of age-restricted or offensive content, or could differentiate between two genres, like sports

or movies. A survey by Poppe (2010) covers an array of applications, developments, and

challenges in this area.

In the context of this work, HAR serves as the means to evaluate our motion descrip-

tors. That is, once we have a descriptor for each video sequence, carrying the motion

information, we assign each video sequence to an action category according to its de-

scriptor and those of sequences which the category membership is known. To make said

assignments or predictions, very often a machine learning technique is considered, more

specifically a supervised learning model of classification. The metric used to compare

descriptors from different authors and somewhat measure the efficacy of the descriptors

is the accuracy of the classification method, in the case of this work, that of a Support

Vector Machine (SVM).

The classification is not an actual step of descriptor computation. It instead serves

the purpose of making a distinction between kinds (categories, or classes) of descriptors.

In HAR, these classes represent different actions. So, it is expected that the descriptors

42

encode the characteristics of said actions into their coordinates. This should happen in a

manner that it is possible to partition the high-dimensional space of the descriptors into

regions that are populated by descriptors representing a single action category.

5.2 HARDWARE PLATFORM AND IMPLEMENTATION

All experiments were conducted either on a IntelrCore™ 2 Quad Q9550, 2.83GHz with

4GB memory or a IntelrXeon™ E4610, 2.4GHz with 32GB. Any and all results concerning

speed of computation were obtained using the Core™2 Quad computer running a single

thread per video, with fairness of comparison in mind. The fact that only one thread

was used serves to highlight how the speed of computation of the method could even be

expanded through parallelism, since there is little to no data concurrency. More up-to-

date hardware can increase the speed even further, although we expect that the benefits

from it are much lesser than those that parallel computation can achieve.

Our software is written in both C/C++ and Python programming languages. And

makes use of the OpenCV (ITSEEZ, 2015) and GCGLib 1 libraries.

5.3 DATASETS

This section presents the datasets used in our evaluation. For all of them, we computed

descriptors for each video in the dataset. These descriptors were then divided into training,

validation, and testing sets for the SVM.

5.3.1 KTH

The KTH dataset (SCHULDT et al., 2004)(Figure 5.1) contains 600 videos of six human

actions: walking, running, jogging, boxing, hand waving and hand clapping. These actions

are performed by 25 people in four different scenarios: outdoors, outdoors with scale

variation, outdoors with different clothes, and indoors. As in (SCHULDT et al., 2004),

the dataset is split in about four sequences for each video, producing a total of 2391 files.

The sequences have a resolution of 160× 120 pixels and 25 fps.

The sequences have a duration of about 2 to 3 seconds, are in gray-scale, and only one

action is portrayed. No object or person other than the actor performing the intended

1GCGLib website: http://www.gcg.ufjf.br/developments.html

http://www.gcg.ufjf.br/developments.html

43

(a) Boxing (b) Handclapping (c) Handwaving

(d) Jogging (e) Running (f) Walking

Figure 5.1: Example videos from KTH dataset action categories (SCHULDT et al.,
2004). Second row shows some of the different actors and camera viewpoints found in the
database.

action appears in the same sequence. These properties are the reason this dataset is con-

sidered not very challenging or demanding. They are also the reason KTH is appropriate

for our global self-descriptor, since all the movement in the scene is taken into account,

without obstructions or any other kind of information.

5.3.2 UCF11 - YOUTUBE ACTION DATASET

The UCF11 dataset (LIU et al., 2009)(Figure 5.2) contains 1168 videos of eleven hu-

man actions: basketball shooting (b shooting), volleyball spiking (v spiking), trampoline

jumping (t jumping), soccer juggling (s juggling), horseback riding (h riding), cycling,

diving, swinging, golf swinging (g swinging), tennis swinging (t swinging), and walking

(with a dog). The sequences are organized into 25 somewhat independent groups, in differ-

ent environments or made by different photographers. The sequences have low resolution,

although higher than KTH dataset, and 29.97 fps.

In comparison with KTH, UCF11 is a much more complex dataset. It has shaky

cameras, cluttered background, object scaling, varied viewpoints, and varied illumination

conditions. These properties that UCF11 has, in themselves are enough to raise the level

of challenge it poses for recognition. But the dataset also has a lot of similarity between

some classes of actions. The classes: b shooting, v spiking, t jumping, and s juggling all

44

Figure 5.2: Example videos from UCF11 - YouTube Action dataset categories (LIU et
al., 2009). Image from the authors’ website: http://crcv.ucf.edu/data/UCF_YouTube_
Action.php.

involve some form of jumping action, and there are three classes involving the swinging

action. Finally, some of the actions, like h riding, cycling, and walking are performed in

conjunction with non-human actors, like horses, dogs, or bikes.

5.3.3 HOLLYWOOD2

The Hollywood2 dataset (MARSZALEK et al., 2009)(Figure 5.3) contains 3669 videos

clips of twelve human actions: answer phone, drive car, eat, fight person, get out of car,

handshake, hug person, kiss, run, sit down, sit up, and stand up. These clips come from 69

movie scenes, which are presented in medium to high resolutions and longer clip lengths

than KTH or UCF11, to a total of approximately 20.1 hours of video. The list of movies,

actions, and environments can be found at: http://www.di.ens.fr/~laptev/actions/

hollywood2/.

Hollywood2 is undoubtedly the most challenging dataset of the three presented, in

terms of Action Recognition. There is a very large variety of actors, backgrounds, envi-

ronments, illumination, camera angles, as well as clip lengths. There are also some scene

cuts and similar actions, like sit up can be confused with stand up, and answer phone

with eat. The dataset has also a great deal of imbalance in number of videos per class.

http://crcv.ucf.edu/data/UCF_YouTube_Action.php
http://crcv.ucf.edu/data/UCF_YouTube_Action.php
http://www.di.ens.fr/~laptev/actions/hollywood2/
http://www.di.ens.fr/~laptev/actions/hollywood2/

45

(a) House (b) Road (c) Bedroom (d) Car

(e) Hotel (f) Kiss (g) Kitchen (h) Office

(i) Living Room (j) Shop (k) Restaurant (l) Hugging

Figure 5.3: Example videos from Hollywood dataset (MARSZALEK et al., 2009), show-
ing a variety of actions and environments. Note the several camera angles, illumination
conditions, backgrounds, and actors. Images and more detail at: http://www.di.ens.

fr/~laptev/actions/hollywood2/.

The sit up class, for example, has a total of 51 video clips between training and testing

sets, while the run class has 276 video clips.

5.4 PARAMETER EXPLORATION

Our method has several parameters, most of them from the extraction of trajectories. As

previously stated in Section 4.3, they are: initial block size, minimum block size, search

window size, search strategy and error function used, error threshold, block splitting fac-

tor, and trajectory size. From the descriptor computation, there are only two parameters:

number of histogram bins and standard deviation for the Gaussian weighing factor.

Since there are so many parameters, exploring all of them thoroughly would be near

unfeasible. So we attempted to identify those that are either secondary or that have

less impact on the accuracy of the classification, and fixed their values. Some of these

secondary parameters we have chosen values based on the available literature and from

previous research. This is the case for the minimum block size and search window size,

in accordance with that values used in the H.264 specification (MURALIDHAR C.B.

http://www.di.ens.fr/~laptev/actions/hollywood2/
http://www.di.ens.fr/~laptev/actions/hollywood2/

46

RAMA RAO, 2012). We have fixed other secondary parameters based on our own previ-

ous research and preliminary experiments, like the standard deviation and block splitting

factor (VSBM tree arity). Table 5.1 shows the values for these parameters, for repro-

ducibility’s sake.

Table 5.1: Values for secondary parameters of our method, as well as some choices made
for elements of the implementation, like the search strategy and error function.

Parameter Values

Minimum block size 4× 4 pixels
Search window size 15× 15 pixels

Search strategy Four step search (4SS)
Error function Sum of absolute differences (SAD)
Block splitting Binary (one block split in two)

Gaussian weight standard deviation 0.01

So the focus of our parameter exploration is on the initial block sizes2, threshold values,

trajectory sizes, and number of histogram bins. The ranges of values for our exploration of

these primary parameters are all based on either the literature, like the initial block sizes

and trajectory sizes, or on our previous experiments, like the threshold values. The only

parameter we had to somewhat blindly estimate was the number of histogram bins, but

even so we were oriented by the idea that the fewer the histogram bins, the more compact

would the final descriptor be. Table 5.2 shows the values used for the experiments using

the KTH dataset.

There are some results presented where the number of bins is 26, which might seem out

of the pattern for experiments with varied histogram bins presented in Table 5.2. This is

because these results come mainly from a previously published work of ours (OLIVEIRA;

VIEIRA, 2015), where we were not concerned with the histogram itself and had fixed the

number of histogram bins according to preliminary experiments. For this dissertation, we

conducted more experiments, considering more values for the histogram bins parameter.

The experiments in this work are more exhaustive, but the inclusion of previous results

was necessary because the results were amongst the best ones. They are shown in Table 6.1

on a future section.

Another aspect worthy of note is that there is a preponderance of the trajectory size,

block size and threshold over the other parameters when it comes to running speed. More

blocks tracked for longer periods greatly increase the cost of computation. This is to be

2Or just block sizes, for short.

47

Table 5.2: Values for primary parameters of our method used in experiments with the
KTH dataset.

Parameter Values

Block size 16, 24, 32, 40, 48, 56, 64
Error threshold 2000, 4000, 8000, 16000, 32000

Trajectory size (frames) 6, 7, 8, 9, 10, 11, 12
Histogram bins 10, 15, 20, 25, 26, 30, 35, 40

expected as the complexity of the method lies much more on the number of matchings

than on the size of the regions where SAD is computed. And in fact it is confirmed

through our running speed experiments in Section 6.1.

Due to the increased size and resolution of both UCF11 and Hollywood2, we approach

the parameter exploration for them in a slightly different manner. For UCF11 we chose a

subset of the parameters used in KTH experiments, that contained the parameter com-

bination corresponding to the best result, as shown in Table 5.3. For Hollywood2 we

selected the same parameter values that yielded the best results for UCF11.

Table 5.3: Values for primary parameters of our method used in experiments with the
UCF11 dataset.

Parameter Values

Initial block size 32, 40, 48, 56, 64
Error threshold 8000, 16000

Trajectory size (frames) 6, 7, 8, 9, 10
Histogram bins 10, 15, 20, 25, 30, 35, 40

Note that so far, we are not taking into consideration the parameters of the SVM

used to classify the descriptors. Table 5.4 contains these parameters and their respective

values. The parameter σ affects how each feature from the samples for the SVM vary,

between smoothly and abruptly. The parameter C is the regularization factor for the

objective function of the classification. Both are responsible to control the trade-off be-

tween bias and variance of the SVM. These parameters are internally optimized by the

SVM itself, through a validation step. So it outputs a total of 6 results, corresponding to

the combination of kernels and power normalization exponents. From these 6 results, we

choose the ones with highest prediction rate.

48

Table 5.4: Values for the parameters of SVM used to classify descriptors generated with
our method. These values are used in the training step and a single combination of them
is chosen during validation to be used in the test step.

Parameter Values

Kernel Triangular, Gaussian
p-norm power 0.3, 0.5, 1.0

σ 0.2, 0.4, 0.6, 0.8, 1.0
C 1, 10, 100, 1000

5.5 Q-WISE METRIC LEARNING ADAPTATION

For the sake of enrichment of our research, instead of just straightforwardly classifying

the motion descriptors, we also propose an adaptation of the quadruplet-wise formulation

for metric learning from Law et al. (2013), aiming to improve both the compactness and

separability of the descriptors. Being based on the work of Parikh and Grauman (2011),

the quadruplet-wise metric learning makes use of a table which associates attributes with

relative ordering of classes, according to the presence of the attributes in each class. An

example of said table (5.5) is provided below, as it is used for the OSR dataset in the

work of Parikh and Grauman (2011).

Table 5.5: Relative orderings used for OSR dataset in both the relative attributes and
quadruplet-wise metric learning. Classes: coast (C), forest (F), highway (H), inside-city
(I), mountain (M), open-country (O), street (S) and tall-building (T).

OSR Attributes Relative Ordering of Classes

Natural T ≺ I ∼ S ≺ H ≺ C ∼ O ∼M ∼ F
Open T ≺ F ≺ I ∼ S ≺M ≺ H ∼ C ∼ O

Perspective O ≺ C ≺M ∼ F ≺ H ≺ I ≺ S ≺ T
Large-Objects F ≺ O ≺M ≺ I ∼ S ≺ H ∼ C ≺ T
Diagonal-Plane F ≺ O ≺M ≺ C ≺ I ∼ S ≺ H ≺ T

Close-Depth C ≺M ≺ O ≺ T ∼ I ∼ S ∼ H ∼ F

The adaptation proposed for this work consists in making associations between classes,

by their similarity amongst each other. For instance, running and walking are similar

actions, while running and jumping are less so. Thus it is expected that as far as running

is concerned, walking have a higher precedence than jumping, and the table would read

”jumping ≺ ... ≺ walking” in the line where running takes the place of an attribute. The

tables for the datasets used in this evaluation are Table 5.6, containing relative attributes

for KTH, and Table 5.7, containing relative attributes for UCF11.

The Q-wise Metric Learning method introduces another parameter: the number of con-

49

Table 5.6: Adapted relative orderings used for KTH dataset. Classes: Boxing (B), Hand
clapping (Hc), Hand waving (Hw), Jogging (J), Running (R), Walking (W).

Classes Relative Ordering of Classes

Boxing R ∼ J ≺ W ≺ Hw ∼ Hc ≺ B
Hand clapping R ∼ J ∼ W ≺ B ≺ Hw ≺ Hc
Hand waving R ∼ J ∼ W ≺ B ≺ Hc ≺ Hw

Jogging B ∼ Hc ∼ Hw ≺ W ≺ R ≺ J
Running B ∼ Hc ∼ Hw ≺ W ≺ J ≺ R
Walking B ∼ Hc ∼ Hw ≺ R ∼ J ≺ W

Table 5.7: Adapted relative orderings used for UCF11 dataset. This table is summarized,
and only the first classes in the precedence are presented. All absent classes in the ordering
are assumed similar or equivalent for this matter. Classes: Biking (B), Diving (D), Golfing
(G), Juggling (Jg), Jumping (Jp), Riding (R), Shooting (Sh), Spiking (Sp), Swinging (Sw),
Tennis (T), Walk dog (W).

Classes Relative Ordering of Classes

Biking ∼ ... ≺ W ≺ R ≺ B
Diving ∼ ... ≺ Jp ≺ D
Golfing ∼ ... ≺ Jg ≺ T ≺ G
Juggling ∼ ... ≺ G ≺ B ≺ Jg
Jumping ∼ ... ≺ D ≺ Sp ≺ Sh ≺ Jp
Riding ∼ ... ≺ Sw ≺ W ≺ B ≺ R

Shooting ∼ ... ≺ D ≺ Sw ≺ Jp ≺ Sp ≺ Sh
Spiking ∼ ... ≺ D ≺ Jp ≺ Sh ≺ Sp

Swinging ∼ ... ≺ D ≺ Jp ≺ Sw
Tennis ∼ ... ≺ G ≺ T

Walk dog ∼ ... ≺ B ≺ R ≺ W

straints derived from the relative orderings tables. In our experiments, we used 50, 100, 500

and 1000 constraints, all built from random sampling of quadruplets out of the training

set.

50

6 RESULTS AND DISCUSSION

This chapter presents the results the experiments with our method. First, in Section 6.1,

the experiments with the method as described in the Proposed Method (Chapter 4), clas-

sifying computed descriptors straightforwardly. Next, in Section 6.2, the complementary

experiments, considering the Quadruplet-wise Metric Learning approach to the classifica-

tion.

6.1 SPARSE TRAJECTORIES

In this section, we present the results for each dataset in three different subsections.

These results were obtained by computing and classifying the descriptors, without using

the Quadruplet-wise Metric Learning method.

6.1.1 KTH

Table 6.1 shows the highest recognition rates and corresponding parameter values obtained

during experiments on the KTH dataset. The case highlighted in bold face will be brought

up for closer examination, using the confusion matrix from its classification (Table 6.2).

The little variety in recognition rates indicates that the method is somewhat stable, that

is, it performs in a similar manner regardless of its parameter values. Still, we question

whether this stable behavior is inherent to the method or if there is need for even further

exploration. There is also the fact that we select the best result out of the ones presented

by multiple classifiers, which could be masking a very different landscape of results.

Figure 6.1 provides a more overall view of the same results through a contour plot.

The results are the same published in Oliveira and Vieira (2015). Lighter colors indicate

higher accuracy values. The highest value is marked as a black dot.

Both Table 6.1 and Figure 6.1 indicate that there seems to be no clear correlation

between the parameters from the generation of the descriptor and the final recognition

rate within the range of parameters explored, although cases with larger initial blocks

tend to include the same information present on cases with smaller initial blocks, through

the partition process. Clear exceptions are the cases with block sizes of 56 × 56 pixels,

which clearly produces worse results. As discussed in Oliveira and Vieira (2015), this is

51

Table 6.1: Highest recognition rates obtained for the KTH dataset using the sparse tra-
jectories histogram descriptors.

Block Size Threshold Trajectory Size Histogram bins Accuracy

24 2000 10 26 91.7
24 2000 11 26 92.1
40 4000 8 20 91.7
40 4000 9 30 91.2
40 4000 10 25 91.7
40 8000 6 26 92.1
40 8000 8 25 91.7
40 8000 12 30 91.7
48 8000 9 26 92.1
48 8000 10 26 92.1
48 8000 11 26 91.7
48 8000 12 26 91.7

due to the ratio between the block size and dataset resolution. KTH has a resolution of

160× 120 pixels, meaning that only two 56× 56 sized blocks fit vertically on a frame and

a third block is composed of 48 rows of out-of-bounds pixels. Our method, as explained

in the same paper, is implemented with a border/out-of-bounds treatment to minimize

undesirable scenarios. But regardless, some cases like this one are bound to happen, even

more so in datasets with varied resolutions, and thus introduce noise into the descriptor

along with the desired motion information.

Table 6.2: Confusion matrix of the best result in KTH dataset. The average recognition
rate is 92.1% in this case. Columns indicate the predicted class, while rows indicate the
actual class.

Boxing Clapping Waving Jogging Running Walking
Boxing 97.2 2.8 0.0 0.0 0.0 0.0

Clapping 11.1 88.9 0.0 0.0 0.0 0.0
Waving 2.8 0.0 97.2 0.0 0.0 0.0
Jogging 0.0 0.0 0.0 94.4 2.8 2.8
Running 0.0 0.0 0.0 25.0 75.0 0.0
Walking 0.0 0.0 0.0 0.0 0.0 100.0

Table 6.2 shows the confusion matrix corresponding to the best result in KTH, regard-

ing recognition rate. It is easily observable that the matrix is somewhat divided into two

square blocks. One showing the confusion between boxing, hand clapping, and waving.

The other showing the confusion between jogging, running, and walking. This is to be

expected due to the nature of the scenes. On the first three action classes, the actors are

standing in the middle of the frames, moving only their arms in repetitive patterns. On

52

6 7 8 9 10 11 12

Trajectory Size

16

24

32

40

48

56

64
B

lo
c
k

 S
iz

e

92.1

88.01188.011
88.52289.033

89.544

89.544

90.567

9
0

.5
6

7

90.567

9
1

.0
7

8

9
1

.0
7

8

91.078

91.078

91.589

91.589

Figure 6.1: Contour plot showing classifier accuracy/recognition rate for each parameter
setting regarding block and trajectory sizes in KTH experiments. Lighter colors indicate
higher accuracy values. The highest value is marked as a black dot. Already published
in Oliveira and Vieira (2015).

the last three action classes, the actors move around, and often leave, the frame.

The confusion between boxing and clapping is due to the repetitive movement of

the actor’s arms nearby his body. Waving, however, is characterized by more expansive

movements of the actor’s arms, hence its lesser confusion with the other two.

We consider that the main responsible for the high confusion between jogging and

running to be the subtle difference in rhythm. In terms of the actual movement performed,

both are essentially the same, except for the speed in which the action is performed. This

difference is not properly captured by our method, since the tensors are normalized with

the intention of making possible to compare scenes of different lengths and resolutions.

Note how this confusion matrix analysis reinforces the idea of visual similarity between

kinds of movements. Similar movements are in fact represented by tensors nearby each

other in a high-dimensional space. So much so that the SVM is not capable of perfectly

separating these tensors. We consider this evidence that our descriptors, the way they are

computed, encode these relations of similarity appropriately.

53

Moreover, the recognition rates for KTH also show little sensitivity to variations in the

parameter combinations. The lowest points in Figure 6.1 are recognition rates of around

88%, while the highest around 92%. This is a small difference, considering the somewhat

extensive parameter exploration in the case of this dataset.

This is not unfortunate though, as we regard this is evidence for the limits of our

method over simple datasets, like KTH. Take into consideration that our method is a

very simple, global approach, and that the dataset is simple enough to have results with

at least a modest amount of insensitivity to changes in the parameter settings. In this

scenario, instead of focusing on reaching even higher recognition rates, we can explore the

impact of the parameter settings on other aspects of the method, like running speed and

final descriptor size.

6 7 8 9 10 11 12
Trajectory Size

8

16

24

32

40

48

56

64

Bl
oc

k
Si

ze

36.458

13.802

16
.6

34

16.634

19.466

22.298

25
.1

30

27.962

30
.7

94

33
.6

26

Figure 6.2: Contour plot showing running speed (in frames per second) for each parameter
setting regarding block and trajectory sizes in KTH experiments. Lighter colors indicate
higher frame rates. The highest value is marked as a black dot. Already published
in Oliveira and Vieira (2015).

Figure 6.2 shows an overview of the speed of computation of our method. The values

depicted are the mean frame rates for KTH videos. To obtain these values, we mea-

sured the time taken to compute the block matching trajectories, histogram descriptor

54

and tensor representation. No classification or any overhead due to file handling or ex-

ternal libraries1 were taken into account for this measurement. With this running time,

we computed the frame rates for each sequence and then the mean considering all se-

quences. Considering the simplicity and uniformity of KTH samples, this mean is a good

representation of the actual running speeds for each sequence individually.

Note that the trajectory size has a major impact on the frame rates, as it was expected.

The greater the trajectories, the more matchings computed in a set of frames. Also as

expected, the block size only has a minor impact in this sense, along with the threshold,

whose influence is not visible in Figure 6.2. The bigger the initial blocks, the less matchings

are computed. But in this case, if the threshold is low, more splitting operations are carried

out and the number of matchings becomes very high.

To exemplify the benefit of the insensitivity of the recognition rates with respect to

parameter variations, consider the lines of Table 6.1 highlighted in Table 6.3:

Table 6.3: Summarized KTH results.
Block Size Threshold Trajectory Size Histogram bins Accuracy Frame rate

24 2000 11 26 92.1 16.7
40 8000 6 26 92.1 36.4
40 8000 12 30 91.7 16.5

These combinations of parameters all yield similar recognition rates, but the difference

in performance of the method with each of these combinations is very noticeable. The

frame rate for the case highlighted on the second line of Table 6.3 is the highest one

amongst the experiments, approximately 36 fps, while the frame rate for the cases on

the first and third lines are below half this value. This indicates that, in an application

scenario, if there were a choice to be made between these parameter combinations, there

would be absolutely no need for the computation of trajectories of size 12. Moreover,

considering that videos are usually captured and played at a speed of approximately 24

fps, we can affirm that our method can be used in tandem with the capture of images and

still provide the best results it can achieve.

Just as a basis for comparison of the speed of computation between our method and

some other common approaches, consider the method by Wang et al. (2011). Despite being

distinct in essence from our method, by the use of local features along their trajectories,

their work serves as a base for many subsequent works. In their method, feature points are

1In this case, the library used to manipulate video files was OpenCV (ITSEEZ, 2015).

55

densely sampled from the dense optical flow of Farnebäck (2003) in multiple spatial scales.

Then each point is tracked throughout the trajectories and has HOG, HOF and MBH

computed in its vicinity. Despite not having any overlap of trajectories, the computation of

the tracking, the optical flow and the feature point sampling in multiple scales is required

for every pair of frames. Note that this is an oversimplification of their framework, since

after these cited procedures, their descriptor is not yet computed. These local features

extracted undergo bag-of-words encoding before finally composing the descriptor for each

sequence. This simplification benefits their method for the sake of the speed comparison

intended, but it is enough to provide an upper bound for the speed of computation of

dense trajectories, as any other computation required are bound to slow the method even

further.

The computation of HOG implemented in OpenCV (ITSEEZ, 2015) runs at approx-

imately 72 fps for KTH sequences. This might seem much faster than our method can

perform, but this value is computed considering only one HOG computation per pair of

frames, instead of one per feature point in a frame. As for the optical flow of Farnebäck

(2003), the running speed of the implementation of it in OpenCV is of approximately

37 fps, once again considering a single computation per pair of frames, instead of one

for every spatial scaling of a pair of frames. There is also the matching between local

descriptors for every feature point to construct the trajectories and the computation of

MBH, for which we have not found available code in OpenCV, but expect to add to the

cost of computing their descriptors.

In contrast, our speed measurements were made considering the whole process of

generating the descriptor, from the construction of trajectories to the computation of the

tensor representation. So if anything, this comparison does not work in our benefit.

Regardless, the computation of the optical flow alone puts a limit to the speed of the

dense trajectories method. Considering a gross simplification, we estimate that its upper

bound is at most as fast as our method, that runs at between 13 and 36 with the parameter

settings we experimented. Admittedly, a more thorough analysis of the performance of

other methods as a whole would be much more preferable. But these values provide at

least some perspective, and hint at a baseline performance for any method which makes

use of HOG, HOF, and dense trajectories.

56

6.1.2 UCF11

Table 6.4 presents the highest recognition rates and corresponding parameter values ob-

tained during experiments on the UCF11 dataset.

Table 6.4: Highest recognition rates obtained for the UCF11 dataset using the sparse
trajectories histogram descriptors.

Block Size Threshold Trajectory Size Histogram bins Accuracy

32 8000 6 26 63.8
32 8000 7 26 64.8
32 8000 8 30 64.1
32 8000 9 30 64.1
32 8000 9 26 63.4
32 8000 10 30 64.0
32 16000 6 25 63.9
32 16000 10 26 63.4
56 8000 7 26 63.3
56 8000 8 26 63.3
56 8000 9 26 63.6
56 8000 10 26 63.3

Figure 6.3, like the previous figure, provides a more overall view of the same results

through a contour plot. Lighter colors indicate higher accuracy values. The highest value

is marked as a black dot.

Note how the recognition rates seem to have a greater sensitivity to changes in the

parameter combinations than in KTH results. Not only the best results are much more

diverse, in terms of recognition rates, but some parameter combinations yielded as low as

58% recognition rates. Additionally, amongst the 12 best results presented in Table 6.4,

there are more combinations of parameters than in KTH results (Table 6.1), even with

the more limited parameter exploration.

Albeit appearing to have a great sensitivity on UCF11, the method can still be con-

sidered somewhat stable. Again, the stability or insensitivity could be product of the

selection of the best results amongst the classifier outputs. Using UCF11, experiments

with a wider gamut of parameters could more easily reveal different behaviors of the

method. As discussed in the KTH results section, this is positive in the sense that more

combinations of parameters can be used to improve other aspects of the method without

necessarily hurting its recognition capacity. But more experiments are absolutely required

to investigate whether the stability is really a property of the method or just a particular

57

6 7 8 9 10

Trajectory Size

32

40

48

56

64

B
lo

c
k

S
iz

e

64.8

60.889

6
1

.3
7

8

61.378

6
1

.8
6

7

61.867

6
2

.3
5

6

62.356

6
2

.8
4

4

62.844

63.333
63.822

64.311

63.333

Figure 6.3: Contour plot showing classifier accuracy/recognition rate for each parameter
setting regarding block and trajectory sizes in UCF11 experiments. Lighter colors indicate
higher accuracy values. The highest value is marked as a black dot.

set of parameters and circumstances that makes it seems so.

Table 6.5 shows the confusion matrix for the case with highest recognition rate on

UCF11 dataset. It is noticeable how this matrix is much more dispersed than the one

for KTH. There are more distinct action samples that are wrongfully classified, which is

indicative of a greater agglomeration of the descriptors for said samples in the classification

space.

The most prominent confusion is between actions of similar nature. Bike, ride and walk

dog, for instance, are specially characterized by the interaction with objects, rather than

by the movement of the actors themselves. Without previous knowledge of the presence

of a bike, a horse, or a dog in the scene, it is hard to distinguish between samples of these

actions. Another example is the confusion between juggle and jump, which have the same

characteristic up and down movement, but in scenes from the juggle class, the ball being

juggled is performing the movement, while in scenes from jump, it is a person jumping

on a trampoline that actually performs the action. Shoot and spike are confused because

they present similar actions, in which the actor jumps and a ball travels at a high speed

58

Table 6.5: Confusion matrix of the best result in UCF11 dataset. The average recognition
rate is 64.8% in this case. Columns indicate the predicted class, while rows indicate the
actual class.

Bike Dive Golf Juggle Jump Ride Shoot Spike Swing Tennis WDog
Bike 62.4 0.7 0.0 0.7 0.0 13.3 2.7 0.0 1.5 6.3 12.5
Dive 1.6 77.6 1.6 3.6 1.2 4.0 3.2 1.6 0.6 4.4 0.7
Golf 0.0 1.7 78.1 6.4 0.0 1.6 4.4 0.7 1.0 5.6 0.6

Juggle 1.3 1.3 5.3 56.8 12.1 1.2 3.6 2.0 5.6 9.2 1.5
Jump 0.7 1.7 1.0 11.1 73.5 0.0 0.0 0.0 12.1 0.0 0.0
Ride 8.2 0.4 0.0 0.7 0.0 80.6 1.1 2.9 0.7 1.2 4.3
Shoot 2.8 9.8 3.1 7.5 0.8 2.0 48.7 12.4 0.7 8.9 3.2
Spike 1.7 9.6 0.0 3.0 1.8 0.7 10.8 60.0 0.0 7.3 5.1
Swing 3.9 0.8 1.0 4.1 13.8 0.0 0.0 0.0 74.5 1.3 0.5
Tennis 2.9 8.3 8.3 9.4 1.1 3.6 6.0 3.6 1.1 54.5 1.1
WDog 11.0 0.8 3.3 1.0 0.8 18.7 5.9 4.6 3.9 3.7 46.2

following the jump from the actor.

Note that this characterizes evidence that our descriptors properly and effectively en-

code visual similarity between distinct kinds of movement, even in more complex scenarios,

such as the ones depicted in UCF11 scenes.

Concerning the running speeds, there are no special remarks to be made as results

for UCF11 follow the same behavior as in KTH. Frame rates for UCF11 runs are lower,

though, ranging from approximately 5 fps to 15 fps.

6.1.3 HOLLYWOOD2

For the Hollywood2 dataset, we experimented only with little variations around the pa-

rameter values that yielded the best results for the UCF11 dataset. The highest prediction

accuracy for Hollywood2 achieved was 32.5%.

Table 6.6: Recognition rates obtained for the Hollywood2 dataset using the sparse tra-
jectories histogram descriptor. The parameter combinations considered were only the few
around the combination that produced the best results for UCF11.

Block Size Threshold Trajectory Size Histogram bins Accuracy

32 8000 7 26 32.5
32 16000 7 26 32.1
64 8000 7 26 32.5
64 16000 7 26 31.8

Table 6.6 presents the recognition rates and corresponding parameter values obtained

during experiments on the Hollywood2 dataset. The recognition rates shown are much

59

lower than for the KTH and UCF11 datasets. As mentioned before, Hollywood2 is much

more complex, so these recognition rates were to be expected.

Sensitivity to parameters is much harder to assess in Hollywood2 experiments, with

such a narrow range of parameters to explore.

Table 6.7: Summary of the confusion matrix of the best result in Hollywood2 dataset.
The average recognition rate is 32.5% in this case. The entries are the accuracies for each
action category. The cross-class confusion is not shown for clarity’s sake, since there are
12 action classes in total.

AnswerPhone Drive Eat Fight GetOutCar Handshake

18.8 62.8 17.6 62.3 15.6 10.9

Hug Kiss Run SitDown SitUp StandUp

18.6 37.7 51.9 45.5 8.0 38.9

Table 6.7 shows the confusion matrix for the case with highest recognition rate on

Hollywood2 dataset. Although the whole confusion matrix is not presented, we can note

how there are very challenging classes, especially the ones that involve the use of some

object. In these classes, such as answer phone, eat, and hug, the movement of the actor

himself is not very distinctive of the class. These actions are rather dependent on another

actor, like hug, or on an object, such as a phone in answer phone. On top of that, these

three actions are often captured in camera close-ups. So for most of the clips, only the

bust or head of the actor is in frame, and the phone, food, or other actor come into frame

very suddenly.

The classes with more fixed angles and very distinctive, characteristic movements, on

the other hand, have much higher prediction accuracy. Drive, fight, run and sit down are

examples of such classes.

6.1.4 STATE-OF-THE-ART

Table 6.8 provides a summary of results, both from the state-of-the-art and our method.

We understand that there is an array of other works, even more recent and also with very

high recognition rates. Still, we wanted to keep this comparison between approaches that

are based on motion extraction and description, like our own method.

The first commentary to be made based on this table concerns the recognition rates for

the KTH dataset. Albeit still below those from other works, our method achieves similar

results. We attribute this approximation to the combination between the simple scenario

60

Table 6.8: Comparison between our method, related works, and state-of-the-art highest
recognition rates for KTH, UCF11, and Hollywood2 datasets.

KTH UCF11 Hollywood2

Kläser et al. (2008) 91.0% – 24.7%
Wang et al. (2011) 94.2% 84.2% 58.3%
Mota et al. (2012) 93.2% 72.7% 40.3%
Perez et al. (2012) 92.0% – 34.0%
Guo et al. (2013) 98.5% 78.5%
Mota et al. (2013) 92.5% 75.4% 40.3%
Jain et al. (2013) – – 62.5%

Wang et al. (2013b) 95.3% 89.9% 59.9%
Caetano (2015) 94.1% – 46.5%

Figueiredo (2015) 91.4% 65.8% 41.5%
Our method 92.1% 64.8% 32.5%

that KTH provides and our global descriptor. In scenes with just a single action, no

clutter or shot cuts, a global descriptor carries very little noise in relation to the motion

information encoded. We consider this an evidence that simple, global descriptors are

adequate for simple, controllable environments. A dense trajectory or dictionary based

approach in these simple scenarios is computationally too expensive to justify very little

gain in relation to our simpler method.

In such cases, we consider our method to be on par, if not advantageous due to its

simplicity, in relation to those from other works. For instance, a direct application of

our approach could be a surveillance system where the cameras are static and the back-

ground is very well-known and predictable. Another similar system, but without these

characteristics, like a metro/subway surveillance system, would require a more sophisti-

cated approach to handle the large amount of people moving in the scene. Then again,

depending on how much more complex the method would need to be, the corresponding

speed cost could make this application unfeasible.

This approximation does not hold for higher complexity scenes, however, as indicated

by the larger gap between recognition rates for UCF11 and Hollywood2. As the complexity

increases, the redeeming characteristics of our method become less advantageous, to the

point of possibly being detrimental to the recognition rates. Our descriptor is global,

meaning that it contains information from whole frames and whole sequences, without

pre-segmentation of elements, feature extraction or prevalence of local spatio-temporal

information. It is also what we call a self-descriptor, that is, a descriptor for a given

61

sequence does not rely on information from other sequences.

In the more complex scenarios, a large amount of noise is introduced into the de-

scriptor, due to background clutter, occlusions, unpredictable camera movement. On top

of these visual challenges, the higher number of action categories and the disposition of

the descriptors in the classification space make the distinction of classes much harder.

Due to the higher variety of scenes in each action class, the descriptors are much more

conglomerated and the classes share the same regions of the classification space. This is

where bag-of-words or other dictionary approaches become advantageous. By construct-

ing a predictable vocabulary of descriptors and thus alleviating the challenges introduced

by the complexity of the scenes. We estimate that both our sparse trajectories and his-

togram features could be incorporated into such an approach successfully. This is out of

the scope of this dissertation, but could be a future improvement.

So, to address our first two hypotheses, concerning whether trajectories of block match-

ings and histograms are able to produce a proper descriptor for motion, we regard that

they have been confirmed through our experiments, as long as we add a restriction. The

dataset, or domain of application is required to be under controlled conditions and be

considerably simple, in order for our method to perform comparably to the state-of-the-

art. Complex environments and sequences are beyond what our descriptor is capable of

handling with proper efficacy. This is due to a combination of a limitation of tensors, and

our global self-descriptor approach. That is, in complex scenes, the tensors have a higher

susceptibility to becoming isotropic due to too much conflicting directions information,

coming from different elements in the frame. Local approaches, more sophisticated di-

mensionality reduction, and dictionary-based methods are expected to handle these cases

more appropriately. On top of that, if a scene involves a large amount of moving elements,

the speed performance of our method is also diminished.

That is not to say that our two hypotheses mentioned are to be discarded, even without

the restriction. They are also corroborated considering that under similar conditions to

works involving both tensors and trajectories, like Caetano (2015) and Figueiredo (2015).

These works use a combination between the trajectories and HOG using outer product.

We achieve comparable results to theirs, in terms of recognition rates, but with a much

more straightforward and fast-computing scheme, using only histograms of orientation

from trajectories.

62

6.2 METRIC LEARNING

In this section, we present the results for the additional experiments we conducted, using

an adaptation of Quadruplet-wise Metric Learning, as described in Section 5.5. Unless

otherwise stated, the experiment conditions were the same as in our previous experiments,

presented in Section 6.1. For these experiments, we computed the descriptors, followed by

the metric matrix, which was used to transform the descriptors prior to their classification.

6.2.1 KTH

Table 6.9: Results using Q-wise Metric Learning for the classification of the highest recog-
nition rate scenarios presented in Table 6.1.

Block Size Threshold Trajectory Size Number of constraints Accuracy

24 2000 10 26 86.9
24 2000 11 26 83.9
40 4000 8 20 83.4
40 4000 9 30 84.4
40 4000 10 25 78.9
40 8000 6 26 82.1
40 8000 8 25 69.8
40 8000 12 30 81.3
48 8000 9 26 73.0
48 8000 10 26 71.2
48 8000 11 26 71.5
48 8000 12 26 73.0

Table 6.9 shows the highest recognition rates and corresponding parameter values ob-

tained during experiments on the KTH dataset using the Q-wise Metric Learning adap-

tation explained in Section 5.5. These recognition rates are also responses from an SVM

under the same conditions as the previously reported results. This time though, the result-

ing matrix learned L2 is applied as a linear transformation to all the samples, obtaining

a higher level feature vector representation of them before classification.

For all of these cases, the number of constraints was the highest tested, 1000 con-

straints. This signals that the more constraints the better, to properly learn the metric.

More experiments are needed to find if there is an upper bound for this number before

facing diminishing returns. Note, though, that the more constraints, the more time and

computation it takes to learn W.

2Refer back to Section 3.3 for more details on the matrix L and its role.

63

The results are worse in all experiments conducted, and the differences range from

less than absolute 5% to 20%. This goes against our hypothesis of improved separability

of the samples. However, the dimension of this new vector representation is the same as

the number of relevant attributes, or in the case of our adaptation, the number of action

classes. This means that the descriptors for KTH become six-dimensional vectors after

this transformation. That is as little as 24 bytes of information per video, if the entries

are single precision floating point numbers.

Further exploration of this method is highly recommended, since we have not taken into

account different relative orderings, a more thorough parameter optimization, or a more

hand-crafted generation of constraints. But we regard these results as being very positive,

considering how they are indicative of a great capability of encoding the characteristics

of each class. Furthermore, even though we cannot confirm our hypothesis of Metric

Learning improving the separability of the samples, we do not discard it either, on the

basis that our approach was just an early attempt at incorporating it into the action

recognition problem.

6.2.2 UCF11

Table 6.10: Results using Q-wise Metric Learning for the classification of the highest
recognition rate scenarios presented in Table 6.4.

Block Size Threshold Trajectory Size Histogram bins Accuracy

32 8000 6 26 45.2
32 8000 7 26 46.2
32 8000 8 30 41.3
32 8000 9 30 44.1
32 8000 9 26 39.1
32 8000 10 30 44.8
32 16000 6 25 42.8
32 16000 10 26 43.9
56 8000 7 26 40.4
56 8000 8 26 39.7
56 8000 9 26 40.5
56 8000 10 26 41.0

Like in experiments using KTH, the results shown in Table 6.10 are lower than their

counterparts with just the SVM classification of our descriptors, presented in Table 6.4.

Again, all of best results reported were yielded by cases with 1000 constraints, the highest

value tested for this parameter.

64

Despite these similarities with results from KTH, this time the best result was not

produced by the same descriptor that achieved the highest recognition rate in the previous

results (Table 6.4). Moreover, through observations of Table 6.10 there seems to be no

correlation between recognition rates with and without Metric Learning. Finding and

identifying such a relation (or lack thereof) could be another point of analysis for future

works.

Albeit being considerably below the recognition rates without the use of Metric Learn-

ing, with differences reaching upwards of absolute 21%, the descriptors are once again

severely compacted, becoming just eleven-dimensional. In comparison, the descriptor that

produced the best result without using Metric Learning has 351 floating point entries.

This specific approach does not provide an improvement, which might be indicative of

a limitation of such compact descriptors. A more thorough investigation is required from

the adaptation of the Metric Learning method to the parameter exploration, to achieve

better results in the more complex scenarios of UCF11 and other datasets.

65

7 CONCLUSION

In this work, we proposed a histogram descriptor for motion in sequences of images,

based on trajectories of block matching displacements. The use of trajectories based on

block matching have been of good efficacy and efficiency, as we could account by the

results obtained. The same can be said for condensing information using the histograms

of relative displacements, since the results are comparable to those of more complicated

methods, that make use of local information, like Caetano (2015) and Figueiredo (2015).

These hypotheses can also be extended with the use of trajectories and histograms in

dictionary-based approaches.

We validate our method using the recognition rates over three datasets, in a human

action recognition application. For the KTH dataset, the best setups reach 92.1% pre-

diction accuracy, with initial block sizes between 24 × 24 and 48 × 48 pixels, splitting

thresholds between 2000 and 8000, trajectory sizes between 6 and 11 frames, and 26 his-

togram bins. For the UCF11 dataset, the best setups reach 64.8% prediction accuracy,

with initial block sizes between 32 × 32 and 56 × 56 pixels, splitting thresholds between

8000 and 6000, trajectory sizes between 6 and 10 frames, and 26 histogram bins. For the

Hollywood2 dataset, due to deadline constraints, we experimented only with the param-

eter values that yielded the best results for the UCF11 dataset. The prediction accuracy

for Hollywood2 achieved was 32.5%.

The recognition rates in KTH, which contains simple scenarios, were comparable to

those of much more complex methods involving even dictionary approaches and much

denser trajectories and brightness flows. In the more complex datasets, UCF11 and Hol-

lywood2, our recognition rates are considerably lower than those from the state-of-the-art

methods. Thus leading us to the conclusion that a simple, global self-description approach

like ours is much more applicable in a equally simple scenario. The background clutter,

multiple cuts, multiple actions, and other difficulties posed especially by Hollywood2 ask

for higher complexity solutions catered specifically to tackle these challenges.

The trade-off between compactness, speed, and accuracy seems to be a non-trivial

matter. In fact, as far as can be seen through the results, it does not even characterize a

trade-off. The compactness and speed of computation of the descriptors are much more

66

predictable through the values of the parameters than the accuracy of the descriptors.

Whereas for the accuracy, we could not properly assess the influence of the parameters in

order to tune them for better results.

This does not mean that this work cannot be improved upon to achieve better results

than the ones presented. A simple improvement, with no alterations to the method itself,

could be to conduct a more thorough exploration of the parameter space, eliminating

parameter confounding and redundancy, as well as properly assessing their impact on

the overall scheme. Another improvement would be to aggregate tensors in a different

manner than just averaging them, what is known to produce isotropic tensors, given

certain conditions. In the work of Yuan et al. (2010), the authors benefit from the fact

that orientation tensors are similar to covariance matrices, and thus do not lie on Euclidean

space, but instead on a Log-Euclidean Riemannian metric space. The same metric could

also be used to measure the distances between samples during classification.

Other future works could incorporate elements from other methods into the one pre-

sented in this work and vice-versa. For instance, a descriptor could be built with infor-

mation from block matching trajectories, where the blocks tracked enclose certain feature

points. Or, as previously stated, both trajectories and/or histograms of orientation could

be used as features in a method based in bag-of-words.

Metric learning is also a topic that calls for further exploration, since we have made a

very straightforward use of it in our method. We have indication that its use in controlled

scenes could be very interesting, given other possibilities of adaptation. In this work, we

suggested just one simple adaptation scheme. Moreover, we account that is necessary

to more appropriately model the problem to more complex scenarios, since results for

UCF11 have degraded considerably with the use of Metric Learning. Both the tensor

representation of the descriptor and the metric matrix from Metric Learning are positive

semi-definite matrices expressing transformations in Euclidean spaces, so we would suggest

a more in-depth investigation of possibly other shared properties between the two, which

could in turn lead to other more creative uses of Metric Learning in the method. Still,

the results achieved, considering how small the descriptors become, are to be considered

a positive outcome.

In summary, our remarks concerning the hypotheses of this work are:

• Trajectories based solely on block matching information are able to produce a motion

67

descriptor with efficiency and efficacy for simple, controlled scenes. Furthermore,

they are viable features to be incorporated into a more complex method.

• Histograms of relative displacements are able to describe motion in a frame sequence,

as evidenced by our results being comparable to those of more complex methods that

employ other features.

• Metric learning, despite not being able to improve the separability of the motion

descriptors in the experiments we conducted, is still subject to further exploration.

We have also found that Metric Learning greatly improves the compactness of de-

scriptors without being severely taxing on recognition rates, for simple scenarios like

the ones in the KTH dataset.

68

REFERENCES

CAETANO, F. A. A Video Descriptor using Orientation Tensors and Shape-

based Trajectory Clustering. Dissertação (Mestrado) — Universidade Federal de

Juiz de Fora, Juiz de Fora, Brazil, 2015.

CHAN, M.; YU, Y.; CONSTANTINIDES, A. Variable size block matching motion com-

pensation with applications to video coding. In: IEEE inproceedings 1990, 1990. v.

137, No.4, p. 205–212.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, v. 20, n. 3, p.

273–297, 1995. ISSN 1573-0565.

DALAL, N.; TRIGGS, B. Histograms of oriented gradients for human detection. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2005. v. 1,

p. 886–893. ISSN 1063-6919.

DALAL, N.; TRIGGS, B.; SCHMID, C. Human detection using oriented histograms of

flow and appearance. In: European Conference on Computer Vision (ECCV),

2006. p. 428–441. ISBN 978-3-540-33835-2.

DAVIS, J. V.; DHILLON, I. S. Structured metric learning for high dimensional prob-

lems. In: International Conference on Knowledge Discovery and Data Mining

(SIGKDD), 2008. p. 195–203. ISBN 978-1-60558-193-4.

DAVIS, J. V.; KULIS, B.; JAIN, P.; SRA, S.; DHILLON, I. S. Information-theoretic

metric learning. In: International Conference on Machine Learning (ICML),

2007. p. 209–216. ISBN 978-1-59593-793-3.

FARNEBÄCK, G. Two-frame motion estimation based on polynomial expansion. In:

Scandinavian Conference on Image Analysis (SCIA), 2003. p. 363–370. ISBN

3-540-40601-8. Dispońıvel em: <http://dl.acm.org/citation.cfm?id=1763974.1764031>.

FERNANDO, B.; GAVVES, E.; ORAMAS, M. J.; GHODRATI, A.; TUYTELAARS, T.

Modeling video evolution for action recognition. In: Conference on Computer Vision

and Pattern Recognition (CVPR), 2015. p. 5378–5387. ISSN 1063-6919.

69

FIGUEIREDO, A. M. D. O.; RENHE, M. C.; MOTA, V. F.; SILVA, R. L. de Souza da;

VIEIRA, M. B. A video self-descriptor based on sparse trajectory clustering. In: Inter-

national Conference on Computational Science and Its Applications (ICCSA),

2016. p. 571–583.

FIGUEIREDO, A. M. de O. A Video Self-descriptor based on Sparse Trajectory

Clustering. Dissertação (Mestrado) — Universidade Federal de Juiz de Fora, Juiz de

Fora, Brazil, 2015.

GIBSON, J. J. The Perception of the Visual World. 1. ed., 1950.

GUILLAUMIN, M.; VERBEEK, J.; SCHMID, C. Is that you? metric learning approaches

for face identification. In: IEEE International Conference on Computer Vision

(ICCV), 2009. p. 498–505. ISSN 1550-5499.

GUO, K.; ISHWAR, P.; KONRAD, J. Action recognition from video using feature covari-

ance matrices. IEEE Transactions on Image Processing, v. 22, n. 6, p. 2479–2494,

June 2013. ISSN 1057-7149.

HA, J.; ROSSBACH, C. J.; DAVIS, J. V.; ROY, I.; RAMADAN, H. E.; PORTER,

D. E.; CHEN, D. L.; WITCHEL, E. Improved error reporting for software that uses

black-box components. In: Conference on Programming Language Design and

Implementation, 2007. p. 101–111. ISBN 978-1-59593-633-2.

HORN, B. K.; SCHUNCK, B. G. Determining optical flow. Artificial Intelligence,

v. 17, n. 1, p. 185–203, 1981. ISSN 0004-3702.

HOROWITZ, S. L.; PAVLIDIS, T. Picture segmentation by a tree traversal algorithm. J.

ACM, ACM, New York, NY, USA, v. 23, n. 2, p. 368–388, abr. 1976. ISSN 0004-5411.

ITSEEZ. Open Source Computer Vision Library. 2015. https://github.com/

itseez/opencv.

JAIN, J. R.; JAIN, A. K. Displacement measurement and its application in interframe

image coding. IEEE Transactions on Communications, COM-29, No 12, p. 1799–

1808, 1981.

https://github.com/itseez/opencv
https://github.com/itseez/opencv

70

JAIN, M.; GEMERT, J. C. van; SNOEK, C. G. M. What do 15,000 object categories tell

us about classifying and localizing actions? In: Conference on Computer Vision

and Pattern Recognition (CVPR), 2015. p. 46–55. ISSN 1063-6919.

JAIN, M.; JEGOU, H.; BOUTHEMY, P. Better exploiting motion for better action recog-

nition. In: Conference on Computer Vision and Pattern Recognition (CVPR),

2013. p. 2555–2562. ISSN 1063-6919.

KINDLMANN, G. Superquadric tensor glyphs. In: Proceedings of the Joint Eu-

rographics - IEEE TCVG Symposium on Visualization (VisSym), 2004. p.

147–154.

KLÄSER, A.; MARSZA LEK, M.; SCHMID, C. A spatio-temporal descriptor based on

3d-gradients. In: British Machine Vision Conference (BMVC), 2008. p. 995–1004.

KNUTSSON, H. Representing local structure using tensors. In: Scandinavian Confer-

ence on Image Analysis (SCIA), 1989. p. 244–251.

KONIUSZ, P.; CHERIAN, A.; PORIKLI, F. Tensor representations via kernel lineariza-

tion for action recognition from 3d skeletons. arXiv preprint arXiv:1604.00239, 2016.

LAW, M. T.; THOME, N.; CORD, M. Quadruplet-wise image similarity learning. In:

IEEE International Conference on Computer Vision (ICCV), 2013. p. 249–256.

ISSN 1550-5499.

LI, R.; ZENG, B.; LIOU, M. L. A new three-step search algorithm for block motion

estimation. IEEE Transactions on Circuits and Systems for Video Technology,

v. 4, n. 4, p. 438–442, 1994.

LIU, J.; LUO, J.; SHAH, M. Recognizing realistic actions from videos “in the wild”.

In: IEEE. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2009. p. 1996–2003.

MARSZALEK, M.; LAPTEV, I.; SCHMID, C. Actions in context. In: IEEE. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2009. p.

2929–2936.

71

MOTA, V. F.; PEREZ, E. d. A.; MACIEL, L. M.; VIEIRA, M. B.; GOSSELIN, P.-H.

A tensor motion descriptor based on histograms of gradients and optical flow. Pattern

Recognition Letters, v. 31, p. 85–91, 2013.

MOTA, V. F.; PEREZ, E. d. A.; VIEIRA, M. B.; MACIEL, L. M.; PRECIOSO, F.;

GOSSELIN, P. H. A tensor based on optical flow for global description of motion in

videos. In: IEEE. Conference on Graphics, Patterns and Images (SIBGRAPI),

2012. p. 298–301.

MOTA, V. F.; SOUZA, J. I.; ARAÚJO, A. d. A.; VIEIRA, M. B. Combining orientation

tensors for human action recognition. In: IEEE. Conference on Graphics, Patterns

and Images (SIBGRAPI), 2013. p. 328–333.

MURALIDHAR C.B. RAMA RAO, I. R. K. P. Efficient architecture for variable block size

motion estimation of h.264 video encoder. International Conference on Solid-State

and Integrated Circuit (ICSIC), v. 32, p. 6, 2012.

OLIVEIRA, F. L. M. de; VIEIRA, M. B. Variable size block matching trajectories for hu-

man action recognition. In: International Conference on Computational Science

and Its Applications (ICCSA), 2015. p. 283–297. ISBN 978-3-319-21404-7.

PARIKH, D.; GRAUMAN, K. Relative attributes. In: IEEE International Conference

on Computer Vision (ICCV), 2011. p. 503–510. ISSN 1550-5499.

PEREZ, E. d. A.; MOTA, V. F.; MACIEL, L. M.; SAD, D.; VIEIRA, M. B. Combining

gradient histograms using orientation tensors for human action recognition. In: IEEE.

21st International Conference on Pattern Recognition (ICPR), 2012. p. 3460–

3463.

PO, L.-M.; MA, W.-C. A novel four-step search algorithm for fast block motion estimation.

IEEE Transactions on Circuits and Systems for Video Technology, v. 6, n. 3,

p. 313–317, 1996.

POPPE, R. A survey on vision-based human action recognition. Image and Vision

Computing, Butterworth-Heinemann, Newton, MA, USA, v. 28, n. 6, p. 976–990, 2010.

ISSN 0262-8856.

72

PURI, A.; HANG, H.; SCHILLING, D. Interframe coding with variable block-size motion

compensation. In: IEEE Global Telecommunication Conference, 1987. p. 65–69.

SANCHEZ, J.; PERRONNIN, F.; MENSINK, T.; VERBEEK, J. Image Classification

with the Fisher Vector: Theory and Practice, 2013.

SCHULDT, C.; LAPTEV, I.; CAPUTO, B. Recognizing human actions: a local svm ap-

proach. In: IEEE. Proceedings of the 17th International Conference on Pattern

Recognition (ICPR), 2004. v. 3, p. 32–36.

SCHULTZ, M.; JOACHIMS, T. Learning a distance metric from relative comparisons. In:

Advances in Neural Information Processing Systems (NIPS), 2004. p. 41–48.

SLANEY, M.; WEINBERGER, K.; WHITE, W. Learning a metric for music similarity.

In: International Conference on Music Information Retrieval (ISMIR), 2008.

p. 313–318.

TRAN, D.; SOROKIN, A. Human activity recognition with metric learning. In: Euro-

pean Conference on Computer Vision (ECCV), 2008. p. 548–561. ISBN 978-3-

540-88682-2.

WANG, H.; KLASER, A.; SCHMID, C.; LIU, C.-L. Action recognition by dense trajec-

tories. In: Conference on Computer Vision and Pattern Recognition (CVPR),

2011. p. 3169–3176. ISSN 1063-6919.

WANG, H.; KLÄSER, A.; SCHMID, C.; LIU, C.-L. Dense trajectories and motion bound-

ary descriptors for action recognition. International Journal of Computer Vision,

v. 103, n. 1, p. 60–79, 2013.

WANG, H.; SCHMID, C. et al. Action recognition with improved trajectories. In: Inter-

national Conference on Computer Vision (ICCV), 2013.

WANG, L.; QIAO, Y.; TANG, X. Action recognition with trajectory-pooled deep-

convolutional descriptors. In: Conference on Computer Vision and Pattern

Recognition (CVPR), 2015. p. 4305–4314.

WEINBERGER, K. Q.; SAUL, L. K. Distance metric learning for large margin nearest

neighbor classification. Journal of Machine Learning Research, JMLR.org, v. 10,

p. 207–244, jun. 2009. ISSN 1532-4435.

73

WESTIN, C.-F. A Tensor Framework for Multidimensional Signal Processing.

Tese (Doutorado) — Linköping University, Linköping, Sweden, 1994.

XING, E. P.; NG, A. Y.; JORDAN, M. I.; RUSSELL, S. Distance metric learning, with

application to clustering with side-information. In: Advances in Neural Information

Processing Systems (NIPS), 2003. p. 505–512.

YUAN, C.; HU, W.; LI, X.; MAYBANK, S.; LUO, G. Human action recognition under

log-euclidean riemannian metric. In: ZHA, H.; TANIGUCHI, R.-i.; MAYBANK, S. (Ed.).

Asian Conference on Computer Vision (ACCV), 2010. p. 343–353. ISBN 978-3-

642-12307-8.

ZELNIK-MANOR, L.; IRANI, M. Event-based analysis of video. In: IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2001. v. 2, p. 123–130.

ISSN 1063-6919.

ZHANG, Z.; WANG, C.; XIAO, B.; ZHOU, W.; LIU, S. Robust relative attributes for

human action recognition. Pattern Analysis and Applications, v. 18, n. 1, p. 157–

171, 2015. ISSN 1433-755X.

ZHU, S.; MA, K.-K. A new diamond search algorithm for fast block-matching motion

estimation. IEEE Transactions on Image Processing, v. 9, n. 2, p. 287–290, 2000.

	 Introduction
	Problem definition
	Objectives

	 Related Works
	 Fundamentals
	Block Matching
	Variable Size Block Matching

	Orientation Tensor
	Metric Learning
	Q-wise Metric Learning

	 Proposed Method
	Method Overview
	Methodology
	Trajectories
	Histogram Descriptor
	Tensor Representation

	 Evaluation Setup
	Human Action Recognition
	Hardware Platform and Implementation
	Datasets
	KTH
	UCF11 - YouTube Action Dataset
	Hollywood2

	Parameter Exploration
	Q-wise Metric Learning Adaptation

	 Results and Discussion
	Sparse trajectories
	KTH
	UCF11
	Hollywood2
	State-of-the-art

	Metric Learning
	KTH
	UCF11

	 Conclusion
	REFERENCES

