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Resumo

Este trabalho apresenta o desenvolvimento completo do formalismo de perturbacoes cos-
mologicas lineares na Relatividade Geral. Inicialmente, revisa-se os fundamentos da Rela-
tividade Geral, incluindo a formulagao variacional das equagoes de Einstein. Em seguida,
constroi-se a cosmologia do modelo FLRW, com énfase nas equagoes de Friedmann. A
parte central dedica-se ao formalismo de perturbacoes, abordando a decomposi¢cao em mo-
dos escalares, vetoriais e tensoriais, o problema do calibre na descricao de perturbacoes, e
a construcao de variaveis invariantes de calibre, particularmente as variaveis de Bardeen.
Derivam-se as equacoes de Einstein perturbadas para cada tipo de modo e discute-se sua
interpretacao fisica no contexto da formacao de estruturas césmicas. Finalmente, se dis-
cute o papel da inflagao coésmica como mecanismo gerador de perturbagoes primordiais a
partir de flutuagoes de campo escalar.

Palavras-chave: Perturbagoes cosmologicas, flutuagoes, variaveis invariantes de calibre,

instabilidade gravitacional, inflacao.
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Abstract

This work presents the complete development of the formalism of linear cosmological
perturbagoes in General Relativity. Initially, the foundations of General Relativity are
reviewed, including the variational formulation of Einstein’s equations. Next, the cosmo-
logy of the FLRW model was constructed, with emphasis on Friedmann’s equations. A
central part is dedicated to the formalism of perturbations, addressing the decomposition
in scalar, vector and tensor modes, the gauge problem in the description of perturbations,
and the construction of gauge-invariant variables, particularly the Bardeen variables. We
derive the perturbed Einstein equations for each type of mode and discuss their physi-
cal interpretation in the context of the formation of cosmic structures. Finally, the role
of cosmic inflation as a mechanism generating primordial perturbations from scalar field
fluctuations is analyzed.

Keywords: Cosmological perturbations, fluctuations, gauge invariant variables, gravita-

tional instability, inflation.
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Introducao

O presente trabalho situa-se no contexto do estudo dos fundamentos teéricos da Rela-
tividade Geral e da Cosmologia Moderna, com o objetivo de analisar as perturbagoes
cosmoldgicas primordiais e compreender seu papel na formagao das estruturas em grande
escala do universo. O trabalho esté organizado em trés capitulos, que abrangem desde os
principios da Relatividade Geral até as perturbagoes cosmolégicas e o papel da inflagao
na geracao de nao homogeneidades primordiais.

No Capitulo 1, sao introduzidos os fundamentos matematicos da Relatividade Geral,
partindo do conceito do espago-tempo como uma variedade diferencidvel equipada com
uma métrica lorentziana desenvolvem-se conceitos essenciais como o tensor métrico, a
conexao de Levi-Civita, os tensores de curvatura e as equacoes de campo de Einstein
derivadas a partir do principio variacional.

O Capitulo 2 centra-se na Cosmologia Moderna, onde se empregam conceitos da Re-
latividade Geral & descricao do universo. Sob o postulado do principio cosmologico, que
estabelece a homogeneidade e isotropia do universo em grande escala, é introduzida a
métrica de Friedmann-Lemaitre-Robertson-Walker (FLRW) como soluc¢do das equagoes
de Einstein para um universo em expansao. Também derivam-se e analisam-se as equa-
¢oes de Friedmann que governam a evolucao do fator de escala em funcao do conteudo
material do universo e do tempo coésmico, e discutem-se modelos cosmologicos corres-
pondentes a universos dominados por diferentes componentes como matéria, radiagao e
energia escura, bem como combinagoes entre elas. Além disso, sao apresentados os para-
metros cosmologicos-chave, como o parametro de Hubble e os parametros de densidade,
culminando na apresentagao do modelo LambdaCDM (ACDM).

O Capitulo 3 aborda o estudo das perturbacoes cosmologicas, essenciais para compre-
ender a formacao de estruturas no universo. A partir da métrica FLRW é introduzido
um formalismo para descrever pequenas variacoes em relagao ao fundo homogéneo e iso-
tropico, classificando-as em modos escalares, vetoriais e tensoriais [1]. Sao introduzidas
as variaveis de Bardeen para construir grandezas invariantes sob transformacoes de coor-
denadas [2]. Por fim, analisa-se o papel da inflacdo cosmica como mecanismo gerador de

perturbagoes primordiais, estabelecendo as bases para explicar o surgimento das nao ho-



mogeneidades que deram origem a formagao das estruturas em grande escala do universo
observavel.

Examinam-se também as implicagoes teoéricas dessas perturbagoes no contexto da
inflagdo [3, 4], fornecendo um arcabougo formal que permite interpretar como os modelos
da cosmologia moderna explicam a organizacao estrutural do universo desde suas fases
iniciais até o presente, oferecendo aplicagoes gerais na construcao e avaliagao de modelos
cosmologicos atuais como em [5, 6, 7, 8] refletindo a relevancia dessas implicagoes tedricas

para a pesquisa em cosmologia.



Notacoes e Convencoes

Notacgoes
w,v,---=0,1,2,3 , os indices gregos representam as coordenadas do espago-tempo;
1,7, k,l,m,n,---=1,2,3 , os indices latinos representam as coordenadas espaciais;

9w , Sa0 as componentes do tensor métrico;
dij , ¢ a delta de Kronecker;

G,c, A |, sao a constante da gravitacao universal, velocidade da luz no véicuo e a constante

cosmolodgica, respetivamente.
Convencgoes

No formalismo tensorial, tanto para indices latinos quanto para indices gregos, distingui-

mos dois tipos de indices:

Indice mudo: E aquele que aparece uma vez como indice contravariante (superior) e
uma vez como indice covariante (inferior) em uma expressao. Por convencao de Einstein,

sobre ele se realiza uma soma implicita sobre todos os valores possiveis. Por exemplo:

4
A'B, = Z A'B,;

pu=0

Indice livre: E aquele que aparece apenas uma vez na expressao e representa uma

componente especifica do vetor ou tensor. Por exemplo:
4
VY= A"B, =Y A"B,.
n=0

Aqui, p é indice mudo e v é indice livre.



CAPiTULO 1

Elementos da Relatividade Geral

Neste capitulo apresentamos os fundamentos matematicos e fisicos da Relatividade Geral.
O desenvolvimento teorico aqui apresentado baseia-se principalmente nas referéncias |9,
10, 11]. Comegamos com a definigao do espago-tempo como uma variedade diferenciavel
equipada com uma meétrica Lorentziana, na qual a conexao de Levi-Civita é construida e
os tensores de curvatura associados sao definidos. Em seguida, derivamos as equagoes de

campo de Einstein a partir da acao de Einstein-Hilbert usando o método das variagoes.

1.1 Breve revisao sobre analise tensorial

1.1.1 Espaco-tempo, variedades diferenciaveis e a métrica

Na formulacao da relatividade geral, o espago-tempo é descrito por uma variedade diferen-
ciavel M de dimensao quatro, cuja estrutura geométrica é especificada por uma métrica
pseudo-riemanniana g,,. Essa métrica ¢ um campo tensorial de ordem dois definido em
cada ponto de M, que permite calcular intervalos espago-temporais e estabelecer rela-
¢oes locais de causalidade. O elemento de linha que define o intervalo entre dois eventos

infinitamente préximos é dado por
ds® = g,, dz"dz”. (1.1)

O tensor métrico g, possui algumas propriedades fundamentais. Em primeiro lugar, é
simétrico em seus indices, isto é, satisfaz g, = g,,. Consequentemente, em uma variedade
de dimensao n, o numero de componentes independentes é n(n + 1)/2, o que implica
que, para n = 4, existem dez componentes independentes. Além disso, a métrica é nao

degenerada, de modo que seu determinante

g = det (gu) (1.2)



é diferente de zero. Essa condicao garante a existéncia da métrica inversa ¢, definida

pela relacao
guagau = 5‘; (13)

Finalmente, a métrica em relatividade geral é dotada de assinatura lorentziana, tipi-
camente escolhida como (—,+,+,4) ou (+,—,—,—), assegurando a distin¢ao entre a
dimensao temporal e as dimensoes espaciais.

Essas propriedades caracterizam o espago-tempo como uma variedade pseudo-riemanniana
de quatro dimensoes, fornecendo o arcabouco geométrico necessario para a formulacao das
equagoes de Finstein e para a descrigao rigorosa dos fenémenos gravitacionais em cosmo-

logia.

1.1.2 Tensores e derivadas covariantes

De forma geral, um tensor é um objeto matemético definido em cada ponto da variedade
diferenciavel M, caracterizado por uma lei de transformagao especifica sob mudancgas de
coordenadas. Um tensor de tipo (r,s) é uma aplicagao multilinear que associa nimeros
reais a r covetores e s vetores do espago tangente em um ponto de M.
Em um sistema de coordenadas {x*}, um tensor de tipo (r,s) pode ser representado
por um conjunto de componentes T##r, . =~ o0s quais obedecem a lei de transformacao
ox'™ Ozt 9z 0z

T4 e e _ . . aq...0
T Vi..Vs al’al axar axlyl 83:,VST B1...0s" (14)

A presenga do tensor métrico g, em M permite estabelecer um isomorfismo entre o espaco
tangente T),(M) e o espago cotangente T);(M) em cada ponto p € M. Esse isomorfismo
torna possivel converter vetores em covetores e vice-versa, por meio das operagoes de
abaixamento e elevagao de indices.

Dado um vetor V# € T;,(M), define-se o covetor associado V,, € T;(M) pela relagao

Vi, =g V" (1.5)

Analogamente, dado um covetor w, € T,;(M), obtém-se o vetor associado w” € T,(M)

utilizando a métrica inversa gH”:
w’ = g"w,. (1.6)

Essas operacoes estendem-se naturalmente a tensores de ordem superior. Por exemplo,

se T*, é um tensor de tipo (1, 1), entao ¢é possivel construir um tensor de tipo (0, 2) através



do abaixamento de um indice, ou seja,

D (1.7)
ou um tensor de tipo (2,0) através da elevagao de um indice, como em

T = g°"T*H,. (1.8)

Portanto, utilizando a métrica podemos alterar a posicao dos indices de qualquer tensor
de maneira consistente. Essa propriedade é essencial e sera utilizada em todo trabalho
sem maiores explicagoes.

A derivada covariante na direcao ¢ denotado por V; é uma extensao da derivada usual
para variedades diferencidveis, o que nos permite derivar campos tensoriais respeitando a
lei de transformacgao uma vez que a derivada parcial de um campo tensorial nao obedece &
lei de transformagao de tensores sob mudangas gerais de coordenadas [11]. Esta derivada

¢ caracterizada localmente pelos simbolos de Christoffel

1
qu = Qg)q{a,ugu'y + azzg;ry - 3%9“1/}, (19)

que codificam como a base vetorial local varia ao longo das coordenadas. A derivada

covariante de um tensor do tipo (0,1), (0,2) e (1,2)! em termos da conexao afim é dada

por
Vol = 0,15 — 05T, (1.10)
VyTug = 0yTap — T Tag — T3 Tha, (1.11)
A A o A o A A o
V. Toy = 0,Tog —TgTa, — T T5s + 12,105 (1.12)

As expressoes (1.10)-(1.12) podem ser facilmente demonstradas usando a regra de trans-

formagao tensorial (1.4) e serao tuteis na Segao 1.2.

1.1.3 Equacao da geodésica

No espaco-tempo, as particulas livres seguem trajetérias chamadas geodésicas, cujo des-
vio em relagao a linhas retas é causado pela presenca de matéria e energia. Derivamos
brevemente a equagao da geodésica em um espago-tempo curvo. O elemento de linha em

um espago-tempo curvo descrito pela métrica g, ¢ dado por ds* = g, dz*dx”. A seguir,

LA formulagao geral para um tensor tipo (n,m) é encontrado na referéncia [10].



consideramos a acao S associada a uma particula livre de massa m, dada por

dxt dxv
S=-m [ds=-m | d — 1.13
/ / T\ e dr dr ( )
onde, 7 ¢ um parametro ao longo da curva e representa o tempo proprio da particula.
)
Para parametrizar a trajetoria da particula, escrevemos dz# = di dr e usando a regra
T
da cadeia, obtemos que (1.13) fica escrita como
m dat dzv\ dxt dz¥ d(ox") dz¥
0S=——|[d y—— y— —— — . 1.14
2 T(g# dr dT) [g” dr dT+g” dr dr] (1.14)

O primeiro termo envolve a variacao explicita da métrica, enquanto o segundo requer
integragao por partes. Desprezando os termos de contorno (isto ¢, assumindo que dx* = 0

nas extremidades da trajetoria) e reagrupando termos, de (1.14) obtemos que

d%at dz® dz”®
+ T s————=0. (1.15)

dr? dr dr
Esta ¢ a chamada equacao da geodésica, que descreve a trajetéria de uma particula livre

em um espaco-tempo curvo.

1.1.4 O tensor de curvatura de Riemann

No contexto de uma variedade pseudo-Riemanniana n-dimensional equipada com uma
métrica Lorentziana, a presenca de curvatura é totalmente codificada no chamado ten-
sor de Riemann, que surge naturalmente da derivada covariante e das propriedades de
paralelismo do espacgo-tempo.

Em coordenadas locais {z*}, se denotarmos por d, as bases locais do espaco tangente,
e por I', os simbolos de Christoffel associados a conexao V, entao as componentes do

loa

tensor de Riemann sao dadas por
RV, = 0,0%,, — 0,T%,, + T T, —T" T . (1.16)

A expressao (1.16) contém todas as informagoes geométricas sobre a curvatura do espago-
tempo: um espaco (pseudo) Riemanniano é plano se e somente se ¥, = 0 em todos os
pontos.

O tensor de Riemann também satisfaz uma série de simetrias fundamentais, que re-

duzem drasticamente o ntmero de componentes independentes. Em particular, ele é



anti-simétrico em seus dois tltimos indices

R  — _RH

vpo vop?

(1.17)

o que implica que a troca dos indices p e o inverte o sinal do tensor e a simetria de
pares de indices que indica que a troca simultdnea dos dois primeiros indices com os
dois ultimos nao altera o tensor, refletindo uma propriedade de invaridncia geométrica da
curvatura e por fim, o tensor satisfaz a primeira identidade de Bianchi, que estabelece uma
relacao ciclica entre trés combinagoes dos indices e representa uma restricao geométrica

do espago-tempo
Ruupo = _Ruupaa Rw/pa = Rpa;un v)\Raﬁuu + v,uRaﬁu)\ + VVRaﬁ)\u = 07 (118)

respetivamente. As (1.17) e (1.18) nos permitem calcular, por exemplo, na dimensao
n = 4, o namero de componentes independentes do tensor de Riemann é 20. Por outro
lado, a partir do tensor de Riemann podem ser construidas outras grandezas geométricas
fundamentais que vao ser usadas, tais como

R, =R R=g"R,, (1.19)

LAY

1
G,Lu/ = R;w - ig,uuR (12())
que sao o tensor e escalar de Ricci e o tensor de Einstein, respetivamente. Esses tensores

satisfazem a identidade diferencial
V.G =0, (1.21)

conhecida como identidade de Bianchi contraida, a qual assegura a conservagao covariante

do tensor energia-momento T*” na presenca de matéria e energia.

1.2 Equacoes de campo de Einstein

As equagoes de campo de Einstein constituem um sistema de dez equacoes diferenci-
als parciais nao lineares e acopladas para as componentes do tensor métrico g,,. Estas
equacgoes descrevem como a geometria do espaco-tempo é determinada pela distribuicao
de matéria e energia, codificada no tensor energia-momento 7),,. Elas substituem a lei
da gravitacao de Newton nos regimes onde os efeitos relativisticos sao relevantes, pro-

porcionando uma generalizagao geométrica da interacao gravitacional compativel com os



principios da relatividade especial.

1.2.1 Acao de Einstein-Hilbert

A agao total de um sistema gravitacional acoplado a matéria é dada por

Stotal - SEH + Smat7 (122)
onde .
- o= —2A 1.2
SEH 167G d*x Q(R )7 ( 3)

¢ a acao de Einstein-Hilbert com constante cosmologica A e G é a constante de Newton.
Por sua vez, S,.: representa a acao das fontes de matéria. E para obter as equacoes
)
de movimento para a métrica ¢,,,, impoe-se que a variacao total da acao seja nula sob
)

variagoes arbitrarias dgH”, isto é
1
8k = 7o /d4x [(5v=9) (R —21) + v=4(oR)| (1.24)

1 2 ma
5Smat = —5 /d4x\/ —g Tuyég'ul/7 onde T,U,I/ = _\/——_956ngth (125)

1
onde 0/—¢g = —;/—gguyég“l’ e usando (1.10)-(1.12) obtemos que

SR = 6g" Ry + Vi (g"0T ) — V,(g"0T ) (1.26)
com
A 1 Ao
0, = 50 (Vi + Vibgus = Vg ). (1.27)

Por outro lado, os termos de fronteira (ou superficiais) surgem da variagdo do R por meio
de derivadas de 6I"

Iz
fronteira. Essa suposicao ¢ uma condi¢ao de contorno natural que assegura que todas as

e sao usualmente eliminados ao se supor que dg,, se anula na

variagoes relevantes ocorram apenas no interior da regiao integrada. Desta forma, usando
(1.24) e (1.25) em (1.22), temos que

1 1 1
5Stotal = /d4ZL‘ V—g { 167G (RMV - §guuR + Aguu) - §T,ul/} 5.9,“/ = 0. (128>
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Desta forma, por definicao 6S = / d4x§—u§g‘“’ e pelo principio da minima agao, de
g v

(1.28) e usando (1.20) obtemos que

G =81GT,, — Agu. (1.29)

E elas s@o chamadas equagbes de campo e determinam a dindmica (isto é, a forma ou
evolugao espago-temporal) do campo métrico g,,, de maneira analoga a forma como a
segunda lei de Newton ou as equacoes de Euler-Lagrange determinam o movimento de

uma particula ou de um campo cléssico.

1.2.2 Tensor energia-momento, leis de conservacgao e covariancia

O Tensor energia-momento ¢ um campo tensorial simétrico do tipo (0, 2) definido sobre o
espago-tempo que codifica localmente as propriedades dinamicas da matéria e os campos e
representa as densidades de energia e de momento linear, bem como os fluxos de momento
e as pressoes internas. Em um sistema de coordenadas locais x* as fontes que originam o
campo gravitacional sao a energia e o momento de 7T}, associados as particulas que cons-
tituem o objeto astrofisico e representa o fluxo da componente  do momento pH? atraveés
de uma hipersuperficie definida pela coordenada x” = constante. Desta forma, a compo-
nente Ty ¢ o fluxo de energia p® = E através de uma hipersuperficie de t = constante
(ou seja, a densidade de energia). Seguindo um raciocinio similar, Tp; representa o fluxo
de energia p® na direcao i, ou seja, a energia que atravessa uma hipersuperficie tridimen-
sional definida por a' = constante, cuja normal ¢ perpendicular ao eixo x*. Por fim, T};
representa o fluxo do momento p’ que atravessam a hipersuperficie espacial definida por
2/ = constante, correspondendo as tensoes internas na direcao ¢ sobre as hipersuperficies.
Formalmente, o tensor energia-momento é definido como a variagao funcional da acao da
matéria em relagdo & métrica g"¥ do espago-tempo escrito em (1.25) onde Sy € a agao
correspondente aos campos de matéria. Essa definicao garante que T}, seja simétrico e
que sua divergéncia covariante se anule quando os campos de matéria satisfazem suas
equagoes de movimento derivadas da acao Spat. O tensor energia-—momento T satisfaz

a lei de conservagao no espago-tempo curvo, expressa pela divergéncia covariante nula,
Vv, T" =0, (1.30)

a partir da qual pode ser obtida a equagao de continuidade, que garante a conservacao
de energia do sistema e as equagoes de Euler relativistas, que descrevem a evolucao do

momento linear dentro do fluido. Portanto, essa equacao expressa a conservagao local de

20 4-momento é definido como p* = (p°, p*) = (E, p?).
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energia e momento em um espaco-tempo curvo.

O principio da covariancia geral estabelece, que as leis fisicas devem ser expressas
de forma tensorial, de modo que sua validade permaneca inalterada sob difeomorfismos
arbitrarios da variedade, refletindo a auséncia de referenciais privilegiados e a natureza
dindmica da propria métrica. A equagao de Einstein (1.29) é covariante porque ambos os
membros sao tensores simétricos definidos sobre o espaco-tempo , e portanto transformam-
se de maneira coerente sob qualquer mudanca de coordenadas.

Para um fluido perfeito, 7" é dado por
™ = (p+p)u'u” —pg", (1.31)

onde p é a densidade de energia e p a pressao. A condigao (1.30) permite obter as equagoes
da dinamica do fluido, e projetando na diregao da 4-velocidade u, obtém-se a equacao de
continuidade

u'Vup+ (p+p)V,ut =0, (1.32)

que expressa a conservagao de energia; projetando ortogonalmente a u” com o projetor

h® = g — u“u”, obtém-se as equagoes de Euler relativistas
(p+ PV yu® + 'V ,p = 0, (1.33)

que descrevem a evolucao do momento linear do fluido.

1.3 O limite newtoniano da Relatividade Geral

A Relatividade Geral é uma extensao da teoria da gravitagao de Newton, portanto admite
um limite newtoniano para que as equacoes de Einstein se reduzam as equagoes de Newton.
Consideremos a equagao da geodésica (1.15) de uma particula livre, logo impomos as que
o campo gravitacional é fraco, ou seja g,, = 1w + hy, com |h,,| < 1. Desta forma, no
regime newtoniano as velocidades sao baixas e o campo gravitacional é estatico, isto é
v =dz'/dt < 1 e dph,, ~ 0, respetivamente. Desse jeito, o tinico componente relevante
da métrica é ggg =~ 1—2P, onde P ¢é o potencial gravitacional. No regime nao-relativistico,
o tempo proéprio e o tempo coordenado coincidem aproximadamente, ou seja dr ~ dt, e
os termos envolvendo produtos de velocidades espaciais sao despreziveis frente aos termos

temporais. Assim, a equacao geodésica para pu =1 se reduz a

d*z’ ; (dx° ?
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Como z° = t, temos dz"/dt = 1, e portanto (1.34) reduz-se a

R

Para calcular T}, usamos a defini¢ao dos simbolos de Christoffel na aproximagao linear:
T8 o (b + Ol — Dyhas) (1.36)
aB — 277 allvp Bllva vitapg) - .

Tomando p =i e a = f = 0, e da hipétese de campo estético (Oyh,, = 0) e usando
hoo = —2®, (1.36) torna-se a

) 1 .. 1 .. .
oo = 50" (Dohjo + Aohjo — O;heo) = =517 0jhoo = 0" 9;9, (1.37)

e portanto, acoplando (1.35) e (1.37) a equacao de movimento é expresso como

RE
dt?

— V. (1.38)

Esta é precisamente a equacao de movimento newtoniana para uma particula sob a in-

fluéncia de um potencial gravitacional escalar ®, satisfazendo a equacao de Poisson
V20 = 47Gp. (1.39)

Portanto, no regime de campos fracos, velocidades baixas e fontes nao-relativisticas, o
movimento das particulas de prova é regido pela equacao de Newton com um potencial
gravitacional ® que satisfaz a equacao de Poisson. Este resultado confirma que a relativi-

dade geral recupera corretamente a dinamica gravitacional cléssica no limite newtoniano.



CAPITULO 2

Cosmologia Padrao

Na relatividade especial a métrica de Minkowski 7,5 = diag(1,—1, -1, —1) é a métrica
que descreve um universo estatico com curvatura nula em todos os pontos do espago.
Entretanto, observagoes cosmologicas indicam que o universo real estd se expandindo.
Assim, neste capitulo vamos nos centrar no estudo de um universo de curvatura espacial
nula, incorporando a expansao césmica em um marco relativistico, descrita pela métrica
FLRW escrita em coordenadas cartesianas comoéveis e tempo césmico nos baseando em

[9, 1]. Isto estabeleceré a base para o capitulo posterior.

2.1 O principio cosmologico, a lei de Hubble e a métrica
de FLRW

Um dos postulados fundamentais da cosmologia moderna é o principio cosmoldgico, o
qual estabelece que, em escalas suficientemente grandes (da ordem de centenas de mega-
parsecs), o universo pode ser descrito como um sistema fisico cujo espago e distribuigao
de matéria e energia ¢ homogénea e isotropica o que implica que nao existe uma direcao
nem uma localizacao privilegiada no universo e que, em cada instante do tempo cos-
mologico ¢, o espago é invariante sob translagoes (homogeneidade) e rotagoes (isotropia)
espaciais. As observagoes cosmolbgicas indicam que o universo estd em expansao e se
estabelece que as galéxias se afastam umas das outras. Esta expansao é descrita por um
fator de escala a que faz com que as distancias fisicas entre objetos em repouso dentro
da estrutura de grande escala aumentem continuamente com o tempo. Para formalizar
essa nocao, introduz-se o conceito de distancia comoével que permanece constante para
observadores que se movem juntamente com a expansao do universo. A distancia fisica

dgs correspondente a uma distancia comével dg., é dada por
dﬁ’s = adcom- (21)

13
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Por outro lado, a velocidade de recessao v em um tempo ¢ é proporcional & sua distancia
dgs e resultado da expansao do espago do universo e dada pela relagao conhecida como a
lei de Hubble, que é expressa como v = H dgs onde H é chamado parametro de Hubble
definido por H = a/a que descreve a taxa de expansdo do universo e seu valor atual,
denotado por Hy, é conhecido como a constante de Hubble.

Nao obstante, o principio cosmologico permite a construcao de modelos baseados em
solucoes exatas das equagoes de Einstein e a métrica compativel com esse principio é a

métrica de FLRW (Friedmann-Lemaitre-Robertson-Walker), que é expressa como

dr?
1 — kr?

ds* = dt* — a(t)? + 72(d6 + sen?6 dp?) | , (2.2)
onde k é o parametro da curvatura do espago, que pode assumir os valores k = 0 (espago
plano), k = +1 (espago fechado) ou k = —1 (espago aberto). Para construir o elemento de
linha e a métrica de nosso interesse, comegamos com um espago-tempo plano e estético,

onde a geometria é descrita pela métrica de Minkowski, e o seu elemento de linha é
ds® = dt* — 6, dv'da? (2.3)

onde J;; representa a métrica euclidiana do espago tridimensional. A métrica total 7,
que descreve este espago-tempo plano ¢ invariante sob as transformagoes do grupo de
Poincaré '. Desta maneira, substituimos os deslocamentos espaciais diferenciais dz* por

a(t) dz'. Portanto, o elemento de linha se torna
ds® = dt* — a*(t) 0;; dx'da’ . (2.4)

Essa expressao corresponde a uma métrica dinamica e espacialmente plana, adequada a
descricao de um universo homogéneo, isotropico e em expansao. Entao a métrica resul-

tante tem a forma

go=1, goi=0 e g;=—a’s;. (2.5)
Por outro lado, a evolu¢ao da densidade de energia p é dada por (1.32), que é obtida pela
conservagao da energia-momento em um universo homogéneo e isotrépico,

p+3H(p+p) =0, (2.6)

onde p esta em funcao do fator de escala a(t). Dessa forma, de acordo com a equagao de

estado,
p=wp, (2.7)

'Para uma discussao mais detalhada das propriedades algébricas do grupo de Poincaré, veja [12].
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onde a pressao p para cada componente do universo é

Poeira (matéria nao relativistica): w=0 = p, =0, (2.8)
1 r

Radiacao: w = 3 = p= %, (2.9)

Constante cosmologica: w=—1 = pp = —pa. (2.10)

Portanto, a densidade de energia para cada universo evolui como

Poeira (matéria ndo relativistica): pp(a) = pmoa™?, (2.11)
Radiagdo: p,(a) = poa?, (2.12)
Constante cosmologica: pa(a) = pao- (2.13)

O comportamento de p é ilustrado na Figura 2.1.

Densidade de energia vs. fator de escala
0 02 04 06 08 1 12 14 16 18 2

2 Po T T T 2 Po
— Radiagao
— Poeira
1.5 Po 11.5 Po
— A
p (kg/m® oo Po
0.5 Po 10.5 Po
0 1 1 1 Il Il Il Il 1 1 O
02 04 06 08 1 12 14 16 18 2

a

Figura 2.1: Comportamento da densidade de energia para um universo dominado por poeira,
radiagdo e A em fungao do fator de escala.

2.2 Equacoes de Friedmann

A equacgao de Friedmann é uma equacao relativista que descreve a evolucao temporal
do fator de escala em um universo homogéneo e isotropico. Para obter tais equagoes,
partimos das equagdes de campo de Einstein decompondo (1.29) mas com assinatura
(+,—,—,—), em trés conjuntos de componentes independentes correspondentes as com-
ponentes temporal-temporal, temporal-espacial e espacial-espacial, respetivamente, ou
seja

Gy =87GTy + A, G} =8rGI} e G, =8rGT, —da’A. (2.14)
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Por meio de (2.5) e (1.9) temos que os simbolos de Christoffel nao nulos sao

0y = a®Hdyy, Tg; = Hos. (2.15)
E através de (2.15), (1.19), temos que as componentes nao nulos do tensor de Ricci sdo
i a\’
—4—2(—) ]. (2.16)
a a
E usando (1.19), obtemos que o escalar de Ricci e
i (a\’
-+ (-—) ] . (2.17)
a a

Desta forma, de (1.20) obtemos que as componentes nao nulas do tensor de Einstein sao

. 2 . . 2
a i a a i

Por tltimo, considerando um fluido perfeito, para obter as componentes de 7,3 usamos

Ro(): —32 (§] Rij = —
a

(1.31), onde u, = (a,0,0,0). Assim, elevando o primeiro indice com (2.5), temos que

Ty =p e T) = —pd.. (2.19)

Assim, substituindo em (2.18) e (2.19) em (2.14) e lembrando a defini¢ao do parametro de

Hubble obtemos que as equagoes de Friedmann para um universo com curvatura espacial

nula, é
.\ 2
a 8rG A
2y =242 2.20
() =0+ 5 (2.20)
e ..
3% = —4nG(p+3p) + A. (2.21)

A primeira equacao prevé como o universo se expande ao longo do tempo sabendo a
densidade total p dependente do conteiido dominante do universo. A segunda equagao
de Friedmann prevé como a aceleracao da expansao do universo muda em funcao da
densidade de energia e da pressao do contetido do universo.

Além de determinar a evolugao da energia e da pressao do conteudo do universo, o
modelo permite reconstruir sua historia térmica e causal, incluindo eventos fundamentais
como o Big Bang, a inflagdo e a recombinagao. A partir dessa descri¢ao, é possivel
estimar a idade do universo e analisar seus possiveis cenarios de evolugao futura, como a

expansao acelerada ou o colapso gravitacional. O modelo também descreve as transigoes
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de dominancia entre os diferentes componentes cosmologicos, como radiagao, matéria e

energia escura.

2.3 Modelos cosmologicos

Para resolver (2.20) devemos usar (2.11), (2.12) e (2.13). Desta forma, para um universo
dominado apenas por poeira, radiagado e energia associada a A, a solugao de (2.20) para

cada uma das componentes é:

a= (%)2/3, a= <%>1/2 ¢ a=exp [\/g (t—to)] : (2.22)

A Figura 2.2 mostra a evolu¢ao do fator de escala a(t), com expansao desacelerada em
universos dominados por poeira e radiagao, e expansao acelerada exponencial em um

universo dominado pela constante cosmologica A. A densidade de energia em fungao do

Fator de escala vs. tempo cosmico

20 0.gto O.z‘lto 0.§t0 o.t‘atO ‘to 1 .?to 1 .flto 1 .§t0 1 .a?to 25)
1.8 11.8
1.6 1.6
1.4+ 1.4
12+ 412

a1 + 1
0.8+ 10.8
0.6 — Poeira 0.6
045 — Radiagao 0.4
0.2 — A 10.2

! ! ! ! ! ! ! ! ! 0
0.2ty 0.4ty 0.6t; 0.8ty ty 1.2ty 14ty 16t; 1.8ty 2t

t(s)

Figura 2.2: Comportamento do fator de escala para um univero dominado por poeira, radiagao
e A em funcdo do tempo cosmico.

tempo cosmico é dada pela solugao da equagao da continuidade, de modo que, para cada

componente do universo, tem-se

t t

pm(t) = pmo (t—O)Z o pe(t) = pro (t—°>2 , pa(t) = pao. (2.23)
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Densidade de energia vs tempo césmico
02ty 04ty 0.6t 08ty to 1.2ty 14t 16t 18t 2.t

2pg \ Po
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1.2p 11.2 py
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0400 10.4 pg
0.2p0 40.2 pg
0 !

ty 1.2t 1.4t 1.6t 1.8t 2f
t(s)

0.2ty 0.4ty 0.6t 0.8t

Figura 2.3: Comportamento da densidade de energia para um Univero dominado por poeira,
radiacao e A em funcado do tempo coésmico.

Dessa forma, o parametro de Hubble em func¢ao do tempo cdésmico para cada compo-

nente do universo se expressa como

Hu=. Ho=g, Hi=\l3. (2.24)

A Figura 2.4 mostra a evolugao do parametro de Hubble para diferentes componentes
do universo?. Em universos dominados por poeira e radiacdo, H decresce com o tempo,
refletindo a desaceleracao da expansao. J& em um universo dominado pela constante
cosmologica, H permanece constante com o tempo, o que implica que a expansao do
universo acelera continuamente, crescendo de forma exponencial.

No entanto, (2.6) e (2.20) por si s6 nao fixam os valores numéricos da taxa de expansao

e da densidade de energia atual.

2.4 Parametros cosmolbgicos

O valor do parametro de Hubble H no tempo atual ¢, é denominado constante de Hubble
Hy = H(typ) e nos indica a taxa de expansao atual do universo, tornando-se assim um
parametro cosmolégico fundamental, dado que muitas medi¢oes de outras propriedades
do universo dependem diretamente do seu valor. H, obedece a lei de Hubble, portanto
medi-la consiste em medir com precisao as velocidades de recessao e distancias fisicas de
um conjunto de galaxias. A velocidade de recessao é obtida a partir do deslocamento

para o vermelho das linhas espectrais, que atualmente é suficientemente precisa para

2Consideramos 1871 = 3.1 x 1019 km - s~ - Mpe ™.
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Parametro de Hubble vs tempo cosmico

10d 2xj018 4xjo18 sxjo18 8x‘1018 10*11%1;
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Figura 2.4: Comportamento do parametro de Hubble para um universo dominado por poeira,
radiacao e A em funcdo do tempo coésmico

determinar a velocidade de recessao de uma galédxia com alta exatidao. Para galaxias
muito distantes (dezenas de megaparsecs), a velocidade de recessdo é muito maior que
a velocidade peculiar, por isso podemos ignorar a velocidade peculiar e assumir que a
velocidade que medimos provém quase completamente da expansao do universo.

O valor da constante de Hubble nao é conhecido de forma exata, por isso costuma ser

parametrizado mediante um ntmero adimensional A de maneira que
Hy = 100h km - s~' - Mpc ™. (2.25)

Esta parametrizagao permite expressar a constante de Hubble H, de forma geral, sepa-
rando a incerteza sobre seu valor exato no fator h. Na década de 1990, o Projeto Chave
do Telescopio Espacial Hubble [13], deu

h = 0.72 £ 0.08, (2.26)

onde o “+£0.08” indica a incerteza tipica da medigao.

O parametro de densidade denotado por €2, definido como o quociente entre a den-
sidade de energia de um componente especifico do contetido do universo e a densidade
correspondente a curvatura espacial nula, permite reescrever a equacao de Friedmann
(2.20) de maneira normalizada. Tal reformulagao ndo apenas simplifica a analise qualita-
tiva das solugbes, como também fornece uma conexao direta com os dados cosmoldgicos
atuais, facilitando a distin¢ao entre diferentes regimes dinamicos e a dominancia da ma-

téria, da radiagao e da constante cosmologica. E é uma forma muito tutil de especificar a
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densidade do universo, que expressa a densidade do universo relativa a um valor de refe-
réncia e indica quao perto esta a densidade real do universo da densidade de referéncia
necessaria para que a geometria espacial do universo seja plana (k = 0). Essa densidade
de referéncia é denominada densidade critica e é denotada por p., sendo definida a partir

da equacao de Friedmann para um universo plano como

3H?
L= 2.27
Pe= o7 (2.27)
A partir disso, o parametro de densidade é definido formalmente como
P
Q=1L (2.28)
Pe
E de (2.25), a densidade critica é
peo = 1.88 h? x 107 kg - m ™. (2.29)

Da definigdo do parametro de densidade (2.28) e (2.20) podemos definir o parametro de

densidade associado a constante cosmologica como

0. _Pa_ A/@BnG) A
AT o, T 3HZ/(87G)  3H?Y

(2.30)

o qual pode assumir valores positivos ou negativos. Neste contexto, a equacao de Fried-

mann pode ser escrita de forma compacta como
Q4+ Q) =1. (2.31)

Além disso, permite reformular a equacao de Friedmann em termos de pardmetros de
densidade atuais, o que favorece uma interpretacao mais clara da dindmica do universo e

sua relagao com as observagoes cosmologicas,

H\2
(—) = Qmoaig + Qr0a74 + QAO (232)
H,

em que a seguinte condicao é satisfeita

Qo + Qp0 + Qap = 1, (2.33)

onde

Pmo Pro A
Qo= 00 =0 Qpp= . 2.34
0 oo 0 Do A0 3H§ ( )
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Para um universo dominado s6 por matéria, radiacao e constante cosmoldgica A, a equacao

(2.32) para cada uma delas ficam

H\? H\? H\?
(E) :Qmoa_3, (E) :Qroa_4 (S (E) :QAO‘ (235)

Resolvendo as trés equagoes dadas em (2.35), obtemos que

1/2

a(t) = (;\/Q_m() H0t> . , a(t) = (2\/Q_m Hy t) e a(t) = exp <\/Q_A0 H0t>.

(2.36)

Para um universo dominado pela matéria e constante cosmologica A, (2.32) fica

a\? Qoo
- == 1+Q 2.
() = (o). 0

onde Q0 + Qa0 = 1. Resolvendo (2.37) para A > 0 e A < 0 temos que

Q. 1/3
a= (—0) senh?/? <;\/ 1 -0 Hot) (2.38)

1— Qo

0 1/3
a= (%) sen?/? (g\/Qmo —1 Hot) , (2.39)

m0 — 1
respetivamente. Como ilustrado na Figura 2.5, um universo com 2,0 < 1 (aberto)
expande-se indefinidamente de forma crescente, seguindo a solugao hiperboélica da equacao
de Friedmann, enquanto um universo com 2,0 > 1 (fechado) atinge um méaximo antes de
iniciar sua recessao, refletindo como a densidade de matéria determina o destino dindmico
do universo.

O modelo ACDM (Lambda-Cold Dark Matter) corresponde ao modelo cosmologico
padrao que melhor descreve o universo, no qual a expansao é governada pela combinacao
de radiacao, matéria e a constante cosmologica. Este modelo explica corretamente as
principais medi¢oes observaveis do universo como a radiagao césmica de fundo, a formacao
de estruturas em larga escala e a expansao acelerada do universo. Os valores atuais para
os parametros cosmologicos foram obtidos a partir das observacoes do fundo coésmico de

micro-ondas realizadas pelo satélite Planck [14] em 2020, sendo

Qp = 0.6889 £ 0.0056, €20 = 0.3158 = 0.0073, (2.40)

k
Qoo ~ 10°°,  Hy— 674405 /3
Mpc
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Fator de escala vs tempo césmico
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Figura 2.5: Comportamento do fator de escala para um universo dominado por poeira e A
(positivo e negativo), em fungdo do tempo cosmico.

Essa abordagem permite analisar a evolucao do fator de escala considerando simultane-
amente as contribui¢oes da radiacao, da matéria e da energia escura. Em particular, a
radiagdo domina a dindmica do universo nos estagios iniciais (¢ < 1), a matéria domina
nos estagios intermediarios e a energia escura determina a expansao acelerada observada
no presente. Assim, o modelo ACDM incluindo radiacgao fornece uma descrigao consistente
de todas as eras cosmologicas.

Por outro lado, determinar a idade do universo é um dos problemas fundamentais
da cosmologia moderna e é definido como o tempo decorrido desde o Big Bang até o
presente. A idade do universo ¢é calculada a partir da equagao de Friedmann (2.32) para
um universo homogéneo e isotropico, expressa em termos dos parametros de densidade
atual da matéria, radiacao e o parametro de densidade associado & constante cosmologica

para um universo com curvatura espacial nula.

I 1
tidade do universo = 55— / da. (241)
HD 0 QmO QTO
— + 5t Qpoat
a a

Embora nao exista solugao analitica para a equagao (2.41), ela pode ser integrada nume-
ricamente. A partir da integracao numérica da equacao de Friedmann normalizada em

termos dos parametros de densidade atuais, obtém-se que a idade do universo no modelo
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ACDM é

tidade do universo & 4.36 x 10'7 s &~ 13.8 bilhoes de anos.

(2.42)



CAPITULO 3

Perturbacoes Cosmolégicas

Como foi desenvolvido nos Capitulo 1 e Capitulo 2, a Relatividade Geral fornece o marco
tedrico para descrever a geometria do espago-tempo através das equagoes de KEinstein,
enquanto o modelo FLRW constitui uma descrigao cosmoldgica fundamental para um
universo homogéneo e isotrépico. No entanto observagoes em escalas inferiores a 100 Mpc
revelam um universo estruturado, com galdxias, aglomerados, superaglomerados, vazios e
filamentos. Estas estruturas emergem de flutuacoes primordiais na densidade de matéria,
onde regioes sobredensas atraem gravitacionalmente matéria circundante, amplificando a
perturbacao inicial através do mecanismo de instabilidade gravitacional. Em um universo
estatico, este processo levaria a um colapso exponencial [15], mas em um universo em
expansao, a dinamica é modulada pela expansao cosmica, que atenua o crescimento das
perturbacoes.

Este capitulo desenvolve o formalismo para a evolugao de perturbacoes cosmologicas
[1], estabelecendo a base tedrica para perturbar a métrica FLRW, classificando as pertur-
bacgoes em modos escalares, vetoriais e tensoriais, introduzindo o conceito de invariancia
de gauge com as variaveis de Bardeen, linearizando as equagoes de Einstein para obter as
equacoes dinamicas de evolugao, e discutindo o papel da inflagao césmica como mecanismo

gerador de perturbacoes primordiais.

3.1 Instabilidade gravitacional

O modelo FLRW descreve um universo ideal com um espago-tempo homogéneo e isotro-
pico em expansao e uma distribuicao de matéria perfeitamente homogénea e isotropica em
todas as escalas espaciais. No entanto, é valido apenas em grandes escalas, ou seja em pe-
quenas escalas, menores que 100 Mpc, o universo nao ¢ homogéneo nem isotrépico, e isso
se manifesta na presenca de galaxias, aglomerados, superaglomerados, vazios, filamentos,

etc.
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Variagoes locais na densidade da matéria em relacao ao seu valor médio sao chama-
das de flutuagoes. Portanto, em pequenas escalas as flutuagoes na densidade da matéria
sao muito grandes e em grandes escalas as amplitudes das flutua¢oes diminuem. Uma
pequena superdensidade exerce uma forga gravitacional adicional sobre a matéria cir-
cundante. Consequentemente, a perturbagao aumenta e, por sua vez, gera uma atragao
gravitacional maior. Em um fundo nao expansivo, isso levaria a uma instabilidade expo-
nencial. No entanto, em um universo em expansao, esse aumento na atracao é parcial-
mente neutralizado pela expansao cosmica. As medigoes da radiagdo cosmica de fundo
(CMB) indicam que, na época da recombinagao, o universo era extremamente homogéneo
e isotropico (com flutuagoes da ordem de ~ 107*) em todas as escalas até o horizonte
observavel atual [16, 17]. No entanto, atualmente o universo apresenta uma estrutura
nao linear, manifestando-se sob a forma de aglomerados de galaxias e, em escalas maio-
res, de vazios, laminas e filamentos. Por outro lado, estudos do desvio para o vermelho
mostram que em escalas cosmologicas suficientemente grandes as nao homogeneidades na
distribuicao da densidade permanecem pequenas em comparagao com a densidade média.

A métrica FLRW possui simetria espacial homogénea e isotropica, ou seja, admite
transformacoes sob as quais a métrica permanece invariante. Em outras palavras, devido
a homogeneidade, a métrica é simétrica sob translagoes espaciais; e devido a isotropia, é
simétrica sob rotacoes espaciais.

Assim, as nao homogeneidades e anisotropias na distribuicao da matéria induzem
perturbacoes na métrica, a métrica total g,g do espago-tempo ¢é expressa como a soma da
métrica de fundo, denotada por (¥ Jag, € Uma pequena perturbagao dg.s representando

os desvios em relagao a métrica de fundo, ou seja,

(

Jap = 0)9046 + 590457 (31)

onde |[§ga5| << | ©gas|. Na Relatividade Geral o campo gravitacional é determinado pelas
equagoes (1.29), ja que os efeitos nao lineares sao despreziveis expandimos ate primeira
ordem e usando (1.20), mas, por conveniéncia, trabalharemos com a forma mista temos
que

0GG = 8rGITY, (3.2)

1
com 0G5 = dRf — 050 R. No estudo das perturbagoes lineares, é fundamental compreen-
der que as quantidades perturbadas, como a densidade de energia €, o 4-vetor velocidade
do fluido u, e o tensor métrico g,s3, nao sao invariantes sob transformacoes infinitesimais

de coordenadas, chamadas de transformagoes de calibre. Dessa forma, usando (A-92)
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para a densidade de energia e pressao temos
0 = 0 = 0 — €0.0€", 0D = 0p = 0p — Po.a&”. (3.3)

Onde denotamos 0,A = A,. E para o 4-vetor velocidade u, = Oy, + du e a métrica

9o = Vgap + 3gap, empregando (A-93) e (A-91) respetivamente, temos que

Oy — OUy = OUy — (O)uaﬂf”* — (O)uﬂle, (3.4)

09ap — 6Gas = 09as — " 9apr€” = © 91867, — Vgar . (3.5)

Podemos classificar as perturbagoes de acordo com seu comportamento sob as simetrias
espaciais do universo de Friedmann. Elas se classificam em escalares, vetoriais e tensoriais.
Essa classificagao é essencial para identificar os graus de liberdade fisicos e construir um
formalismo simplificado, porém completo, para perturbacoes lineares.

A perturbacao da componente temporal-temporal dggy é puramente escalar; portanto,
comporta-se como um campo escalar sob o grupo de isometrias espaciais do fundo FLRW

e pode ser expressa em termos de fungoes escalares
Sgo0 = 2a°¢, (3.6)

onde ¢ é um 3-escalar. As componentes dgy; se comportam como um campo vetorial.
Assim, pelo teorema de Helmholtz, podem ser decompostas como a soma do gradiente

espacial de um campo escalar B e de um campo vetorial S; com divergéncia nula, ou seja,
8g0i = a* (B + Si), (3.7)

onde B;' é o componente longitudinal vetorial e S; é um vetor que satisfaz S, = 0 (a
divergéncia espacial nula), ou seja, S* ¢ um campo vetorial transversal. Dessa forma,
a perturbacao da componente dgg; contém tanto uma parte escalar quanto uma parte
vetorial. As componentes dg;; se comportam como um campo tensorial e podem ser

decompostas como a soma
6gi; = a* (200, + 2E i + Fij + Fji + hij) (3.8)

onde 1) e E sdo campos escalares. F; é um campo vetorial satisfaz a condi¢iao F = 0
(isto é, a divergéncia espacial de F; é nula), ou seja, F; é um campo vetorial transversal.
h;; € um tensor que satisfaz as seguintes condigoes: hi = 0 (trago nula), eliminando a

parte escalar, e h;l = 0 (divergéncia espacial nula), eliminando a parte vetorial de h;;,

Neste capitulo * indicard d/dt e ' indicara d/dn.
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e restando apenas os modos tensoriais fisicos. E o elemento de linha para perturbacoes

escalares, vetoriais e tensoriais sao

ds* = a®[(1+ 2¢)dn® + 2B da'dn — ((1 — 2¢)6;; — 2E,;;) da'da’], (3.9)
ds* = a®[dn® + 25; dz'den — (6,5 — Fj — Fj;)da'da’], (3.10)
ds* = a®[dn® — (8;; — hyj)da’da’], (3.11)
respetivamente.

3.2 Variaveis invariantes de calibre

Sabemos que o 4-vetor infinitesimal £€* pode ser escrito como £* = (£9,£%). Aplicando o
teorema de Helmholtz, podemos decompor o campo vetorial contravariante infinitesimal

£ em duas partes, uma parte transversal e outra longitudinal, ou seja
§=¢&+¢ (3.12)

onde £/ é um campo vetorial com divergéncia nula, ou seja, fil = 0, ¢ é uma funcao
escalar e ("' é o gradiente do campo escalar (. Agora, lembrando as componentes da
métrica de fundo (©ggy = a?(n), Vg = Qg =0 e (O)gij = —a*(n)d;;, usando a lei de

transformagao de calibre (3.5) se-obtem que

0goo = 0goo — 2a(a§0)'7 (3.13)

0goi = 090 + a” [€7; + (¢ = &€°).], (3.14)
- a’

8gij = 6gij — @ 255@‘50 +2C;; + (€ +E€154) | - (3.15)

Podemos obter as leis de transformacao de calibre para as perturbagoes escalares, vetori-
ais e tensorial usando as leis de transformacao de calibre definidas sobre o tensor métrico.
Substituindo as expressoes da parte temporal-espacial e espacial-espacial da métrica per-
turbada dgag, ou seja, dgo; € dg;; dadas em (3.6) (3.7) e (3.8) nas expressoes de dgo; € 67;;

dadas nas equagoes (3.13), (3.14) e (3.15), obtemos as transformagoes de calibre para as
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demais perturbagoes escalares v, B, E, vetoriais 5;, F; e tensorial h;;, que sao dadas por

6 d=0t (@), woT=vile (3.16)
B—B=B+(-¢, E—-E=E+ (3.17)
Si— S;=S8i+&, Fi—F=F+&, (3.18)

hij = hij = hy;. (3.19)

Dessa forma, apenas £° e ¢ contribuem para as transformacoes de calibre das perturbacoes
escalares, e ao escolhé-las adequadamente, podemos fazer com que duas das quatro fungoes
Y, ¢, B, F desaparecam. As combinacoes lineares invariantes de calibre mais simples das
funcoes ¢, ¥, B e E/, que abrangem o espaco bidimensional das perturbacoes fisicas, sao:

1 a’

@ng—a[a(B—E’)}’ e U=¢+—(B—FE) (3.20)

a
denominadas variaveis de Bardeen [2]. Mas existe um ntamero infinito de variaveis invari-
antes de calibre diferentes, ja que qualquer combinagao de variaveis invariantes de calibre
também serd uma variavel invariante de calibre.

Para as perturbagoes vetoriais, tem-se que

Vi=S;—F|. (3.21)
No calibre Newtoniano temos que
5900 = = 2a°p, g0 =0, 0g;; = = 2a*Péj, (3.22)
6900 =0, 8go; V" =a’S;, 6g;; " = (Fij; + Fj,), (3.23)
8goo ™™ =0, g "™ =0, dgij ten — th,-j. (3.24)

3.3 Perturbacao das equacoes de Einstein

Empregando a regra de transformacgao de calibre (A-94) se-obtém que

3Gy = 6GY — (969 (B - E), (3.25)
1
ﬁfz&ﬁ—(@%—ngQQB—Ep, (3.26)

0G; = 3G, — ((O)G§-> (B—E), (3.27)
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e a mesma estrutura e para (5_Tg Entao, no calibre newtoniano os segundos termos das
transformacoes de calibre do Eg (3.25)-(3.27) e do Wg sao anulados, de esta forma

considerando nossa equagao de Einstein (3.2) para perturbagoes sao dadas por
6Gy = 8TGoT (3.28)
onde mg = 0Gj e ﬁg = 0Tg. Também, (3.28) podem se-dividir em 3 blocos, ou seja
5G = = SrGETL™ | 5G1 " = 87GETL™ ¢ 3G = 8xGoTS™.  (3.20)

Aplicando as expressoes das componentes do tensor de Einstein dadas em (B-122)-(B-130)
mas em termos das variaveis invariantes de calibre no calibre newtoniano onde ¢ = @,
Y =W, S; — F/ = V,; nossas equagoes para perturbacoes escalares, vetoriais e tensoriais

sao dadas por,

AV — 3H(V + HP) = 4nGa’Ty *, (3.30)
(V' +HO) , = 4nGa?dT; ™, (3.31)

((27{’ +HY)D +H(D+20) + T+ %A(CID — \If))éj.jt
—%(CID —0) , 0" = —4rGa?T, >, (3.32)
AV, = 167Ga23T,; ™, (3.33)
{ [V + Vj,k]/ + 2H | Vi + Vi }5* — —167Ga®0T, ™", (3.34)
(WY, + 2HM,, — Ahy) 6% = 167Ga®5T, ', (3.35)

As equagdes (3.30)-(3.35) sao as equagoes de Einstein para perturbagoes com fonte geral.

3.3.1 Perturbagao do setor de matéria

Considerando o tensor energia-momento T = g°*T\s e separando cada termo como a
suma de uma parte de fundo e parte perturbada e considerando s6 termos ate primeira

ordem temos que

onde sabemos que

Top = (¢ + p)uaus — PYag (3.37)
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Para obter 07,5 separamos cada termo como a suma de uma parte de fundo e parte

perturbada e considerando termos ate primeira ordem, temos que
0Tws = (02 +6p) Dug Qug + (g0 +po) ( Ougdug + St (O)u[g) — p00gas — 00 Vs, (3.38)

entdao, no fundo FLRW e para um fluido perfeito e logo substituindo em (3.36), obtemos
que
. 1 . .
6T = be, T = —(60 —|—p0)(5ui e 0T = —0pd; (3.39)
a

e considerando as transformagoes de calibre da densidade de energia (3.3), pressao (3.3)

e 4-velocidade (3.4), no calibre newtoniano as componentes de 5_Tg ficam como

0 — — 1 _ . .
5Ty = e, T, = 5(50 +po) (Ouys + 0uy;) e OT; = —opdl, (3.40)
onde X

0Ty =32, 3T, = ~(co+po)Juys, T, = —3p}, (3.41)

<70 vet <70 vet 1 <t vet
5T0 = 0, ) i = —(50 + po) (S'LLJ_i, 5T] = O, (342)

a

0T = 0, 3T} " = 0, 3T, **" = 0. (3.43)

Desta forma, substituindo (3.41)-(3.43) correspondentemente em (3.30)-(3.35) encontra-

mos as equacoes de evolugao para os modos escalares, vetoriais e tensoriais, que sao dadas

por
AV — 3H(V' + HP) = 4nGa’de, (3.44)
(\I// + H(I)),z = 47TGCL2é(€Q + po)ﬁuz, (345)
/ 1 :
((QH’ +H)® + H(P+20) + 0" + 7O (2 - \If))ég+
1 . .
_§(CI) — \Il)’kjélk = 4w Ga*ops;, (3.46)
— 1
AVZ = 5(50 + po) 5UJ_Z', (347)
{ [Vk,j + Vj,k}/ 4o [Vk,j + Vj,k} }5““ =0, (3.48)
hi; 4 2Mhy; — Ahy; = 0. (3.49)

As equagoes (3.44)-(3.49) descrevem completamente a evolugao dinamica das perturbagoes
cosmologicas: as equagoes (3.44)-(3.46) governam os modos escalares, onde (3.44) rela-

ciona o Laplaciano do potencial gravitacional ¥ com flutuagoes na densidade de energia
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0e, (3.45) conecta a derivada temporal dos potenciais com a componente longitudinal do
4-vetor velocidade @”i do fluido cosmoldgico, e (3.46) descreve a evolugao dindmica com-
pleta dos campos escalares ® e ¥ incluindo efeitos de pressdo dp; as equacdes (3.47)-(3.48)
descrevem os modos vetoriais, com (3.47) relacionando o Laplaciano do campo vetorial
V; com componentes transversais do 4-vetor velocidade du, ;, e (3.48) governando o amor-
tecimento de campos vetoriais devido & expansao cosmica; finalmente, (3.49) caracteriza
os modos tensoriais, descrevendo a propagacao de ondas gravitacionais h;; no universo
em expansao. Esta decomposi¢ao tnica em representagoes irredutiveis do grupo de rota-
¢oes garante que modos escalares, vetoriais e tensoriais evoluem independentemente na

aproximagcao linear.

3.4 Breve discussao sobre inflacao e perturbacoes pri-

mordiails

O modelo cosmologico padrao, baseado nas equagoes de Friedmann (2.20) e (2.21) deri-
vadas da equagoes de Einstein (1.29), descreve um universo homogéneo e isotropico cuja
dindmica depende da densidade de matéria e radiagao. No entanto, apesar do seu su-
cesso em explicar fendmenos como a expansao cosmica e a nucleossintese primordial, esse
modelo enfrenta dificuldades fundamentais conhecidas como os problemas do horizonte,
da planicidade e das condigoes iniciais. Esses problemas indicam uma incompatibilidade
entre a extensao causal do universo observavel e a extrema homogeneidade do fundo cos-
mico de micro-ondas (CMB), bem como a proximidade do parametro de densidade total
)y ao valor critico unitario.

A infla¢do césmica inicialmente proposta por A. Guth [18] surge como um mecanismo
fisico que resolve, de maneira natural, tais inconsisténcias. Define-se, em termos gerais,
como uma fase de expansao acelerada do universo primitivo, durante a qual a gravidade
atua efetivamente como uma forca repulsiva. Matematicamente, essa condicao se expressa

mediante a segunda derivada positiva do fator de escala:
a(t) > 0. (3.50)

Durante a inflagao, o ritmo de expansao é tao rapido que o fator de escala cresce quase
exponencialmente,

a(t) oc e, (3.51)

com o parametro de Hubble H mantendo-se aproximadamente constante durante essa
fase. Esse comportamento implica que as distancias fisicas entre pontos crescem mais

rapidamente do que a velocidade com que a luz pode percorré-las, estabelecendo efetiva-
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mente um horizonte de eventos durante a inflacao.

Paradoxalmente, essa expansao acelerada resolve o problema do horizonte. Antes da
inflacao, toda a regiao que posteriormente formaria o universo observavel encontrava-se
dentro de um tnico dominio causalmente conectado. A expansao acelerada “infla” essa
regiao microscopica até escalas cosmologicas, garantindo a homogeneidade e a isotropia
observadas no CMB entre areas que hoje parecem causalmente desconectadas. Desse
modo, a inflagao transforma um pequeno dominio causal em um universo observavel coe-
rente.

Um dos éxitos conceituais mais notaveis da teoria inflacionaria reside em sua extraor-
dinaria capacidade de explicar a planicidade espacial observada do universo. De acordo
com a equagao de Friedmann, o desvio da planicidade ¢ dado por |Q — 1| = |k|/(aH)?
(parametro de densidade associada & curvatura), onde k representa a curvatura espacial.
Durante a fase inflacionaria, o fator de escala cresce quase exponencialmente enquanto H
permanece aproximadamente constante, fazendo com que o produto aH aumente de ma-
neira exponencial. Como consequéncia direta, o termo |2 — 1| diminui exponencialmente,
isto é,

Q-1 oxe ' = |Q—1| =0, (3.52)

indicando que qualquer desvio inicial do universo em relacao a planicidade é rapidamente
suprimido. Dessa forma, a inflacao prevé de maneira natural que o universo atual seja
praticamente plano, €2y ~ 1, em notéavel concordancia com as medigoes cosmologicas do
satélite Planck.

Além disso, a inflagao explica de forma natural a origem das flutuagdes primordiais
[19, 4] que deram origem & estrutura cosmica. Durante a fase inflacionaria, as flutuagoes
quanticas do campo inflaton — o campo escalar responsavel pela energia de vacuo domi-
nante — sao amplificadas pela expansao acelerada e, ao sairem do horizonte, congelam-se
como perturbacoes classicas do potencial gravitacional. Quando a inflacao termina e o
universo retorna a uma fase de expansao desacelerada, essas perturbacoes reentram no
horizonte e atuam como sementes para a formacao de galaxias e aglomerados.

A duragao e a escala energética da inflagao sao restringidas por observagdes cosmolo-
gicas [20]. Nos modelos mais simples, a inflagdo conclui-se aproximadamente em tempos
da ordem de

tp~ 10724-107% s, (3.53)

apOs os quais ocorre uma fase de reaquecimento, em que a energia do campo inflaton
converte-se em matéria e radiagao ordinarias, restabelecendo as condigoes iniciais do mo-
delo de Friedmann.

A Figura 3.1 ilustra o comportamento da taxa de expansdo do universo, a(t), em
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Figura 3.1: Evolugao da taxa de expansao cosmica a(t) durante a fase inflacionéria e a subse-
quente expansao de Friedmann desacelerada.

fungao do tempo cosmologico t. No inicio da evolu¢ao (regiao a esquerda), o universo
emerge de um estado quantico ainda nao descrito por uma teoria completa da gravitagao.
Em seguida, inicia-se uma fase de expansao acelerada, conhecida como inflagao, carac-
terizada pela condigao d(t) > 0. Durante essa fase, o fator de escala a(t) cresce quase
exponencialmente, o que implica um aumento abrupto de a(t), que atinge um valor quase
constante. Essa etapa é dominada pela energia de vacuo associada ao campo inflaton, cuja
pressao negativa atua como uma fonte gravitacional repulsiva. A inflagao perdura por um
intervalo muito curto de tempo, mas suficiente para expandir uma regiao microscopica
até dimensoes cosmoldgicas. O ponto assinalado como saida suave marca o término da
inflacao, quando o potencial do campo inflaton perde a dominancia e a energia armaze-
nada é convertida em particulas e radiacao — processo conhecido como reaquecimento.
Apos essa transicdo, o universo entra na fase de expansao desacelerada de Friedmann,
dominada inicialmente pela radiacao e, posteriormente, pela matéria. Essa etapa ¢é re-
presentada na figura pela curva descendente de a(t), indicando que a acelera¢do cosmica
torna-se negativa, d(t) < 0.

Assim, a Figura 3.1 sintetiza a transigao entre trés regimes cosmologicos distintos: (i)
uma fase pré-inflacionéria ainda ndo compreendida, (ii) a expansao acelerada inflacionaria
que resolve os problemas de horizonte e planicidade, e (iii) o retorno continuo a dinamica

padrao de Friedmann, que descreve a evolucao térmica e estrutural subsequente do cosmos.
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3.5 Perturbacoes cosmolbégicas primordiais

Um dos problemas centrais da cosmologia contemporanea é explicar a origem das nao
homogeneidades primordiais, que atuam como sementes para a formagao de estruturas.
Antes do advento da cosmologia inflacionaria, as perturbagoes iniciais eram postuladas e
ajustadas para se adequar aos dados observacionais. A inflacao, em contraste, fornece uma
explicacao para a origem dessas perturbagoes e permite prever seu espectro, possibilitando
confrontar a teoria com observagoes.

Durante a inflacao cosmica, as perturbagoes primordiais originam-se de flutuagoes
quanticas do campo escalar. Tais flutuagoes possuem amplitude significativa apenas em
escalas proximas ao comprimento de Planck, mas sao esticadas para escalas galacticas du-
rante a fase inflacionéaria, mantendo aproximadamente sua amplitude. Assim, a inflacao
conecta a microfisica do campo escalar a estrutura em grande escala do universo, pro-
duzindo o espectro das flutuagoes primordiais que serve de base para diferentes cenarios
inflacionarios.

Para descrever rigorosamente essas perturbagoes, consideramos um universo plano

preenchido por um campo escalar ¢ condensado, com acgao

5= [ pX.0)v=gda, (3.54)

onde

1 (6%
= 50"%aps (3.55)

O termo lagrangiano p(X, ¢) representa a pressao do sistema [3|. Ao variar a agao (3.54)
com respeito & métrica g,,, obtém-se o tensor energia-momento na forma caracteristica

de um fluido hidrodinamico ideal
Ty = (¢ + p)uug — pdg. (3.56)
Aqui u, = ¢, /v2X e a densidade de energia ¢ é dada pela expressao
e=2Xpx —p. (3.57)

O termo p x = Jp/0X denota a derivada parcial de p em relagdo a X. Dessa forma, um
campo escalar pode representar o fluxo potencial de um fluido ideal. De modo inverso,
a formulacao hidrodinadmica fornece uma correspondéncia 1til para a descricao de um
campo escalar com lagrangiano arbitrario.

A agdo (3.54) é geral o suficiente para englobar todos os modelos inflacionérios de

campo tnico, incluindo o caso da inflacao k [3]. Quando a lagrangiana depende apenas
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de X, tem-se ¢ = ¢(X), e em diversos casos a relacao (3.57) pode ser reescrita sob a
forma p = p(e), correspondente a equagao de estado de um fluido isentrépico. Para uma
dependéncia do tipo p o X", obtém-se p = /(2n — 1). Assim, o caso particular p oc X?
descreve um fluido ultra-relativistico com equagao de estado p = €/3. No caso mais geral,
em que p = p(X, ), a pressao nao pode ser expressa exclusivamente em funcdo de €, pois
X e ¢ sao variaveis independentes. Ainda assim, a analogia hidrodinamica permanece
valida e fornece uma interpretacao consistente do sistema. Para o campo escalar candnico,
as expressoes reduzem-se a p = X — V(p) e e = X 4+ V(p). Aqui derivamos as equagoes
para perturbagoes e as reformulamos em uma forma simples e conveniente

Para o fundo, o estado de um universo homogéneo e plano é caracterizado completa-

mente pelo fator de escala a(n) e pelo campo homogéneo ¢y(n), que satisfazem as equagoes

familiares .
'HZ::éga%; (3.58)
e
¢ = e X 2y = —3H(= +p), (3.59)

onde Xy = p/(2a%) e definimos G = 1. Substituindo ¢ de (3.58) no lado esquerdo de
(3.59), obtemos a relacao
H —H? = —4mad*(c +p), (3.60)

que é 1til no que segue.

Para a analise das perturbacoes e a derivacao das equagoes que descrevem as inho-
mogéneidades, é necessario inicialmente expressar as componentes invariantes de gauge
do tensor energia-momento 57; em funcao das perturbacoes do campo escalar e da mé-
trica. Esse procedimento torna-se mais simples ao adotar o gauge longitudinal, no qual a

métrica pode ser escrita na forma seguinte,
ds®> = a*(n) [(1 +2®) dn® — (1 — 2V) §pda’dz”] . (3.61)

Em ordem linear, mantém-se apenas os termos de primeira ordem nas perturbagoes,

1 oy’
SX — §5g00%2 + %60 = 2X (—@ + %:) , (3.62)
0

e a componente 67, ¢

J d
6Ty = de = e x0X +e,0p =cx (6X — X{)S’TS,O) —3H(e +p) (?S,O
0 0

S\’ 1) )
- ‘fip«—*f) +’H—?-q>) ~3H(e +p) .
c Yo 2 Yo

S

(3.63)
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Utilizamos a segunda igualdade em (3.59) para escrever €, em fungao de € x, ¢ e p,
introduzindo também a definigao da velocidade do som, c,, que determina a propagacao

das perturbacoes escalares no fluido,

== = : (3.64)

No caso de um campo escalar canonico, a velocidade do som coincide com a velocidade

da luz, ¢, = 1. Os componentes 07} podem ser obtidos de maneira direta, fornecendo

A 0. dep
0TY = (e + p) uldu; = (e + 00 %o = (¢ + (—) ) 3.65

Substituindo §p por dy e substituindo (3.63) e (3.65) em (3.30) e (3.31), obtém-se para

as variaveis invariantes de gauge ¥, ® e d¢:

1 oo\ dp dp
1 ((5_87) P ) m_] @6
Cs 20 2 20

(V' + H®) = 47wa’(c + p) (%) . (3.67)

AV — 3H (V' + HP) = 4ma®(e + p)

Como §T} = 0 para i # k, segue-se que ¥ = ®. As duas equagdes apresentadas sio
suficientes para determinar tanto o potencial gravitacional quanto a perturbacao do campo
escalar. Contudo, é conveniente reescrevé-las em uma forma alternativa. Ao utilizar a
relacdo (3.67) para expressar ® em termos de U’ e §p, e substituindo o resultado em
(3.66), obtém-se

dma*(e +p) (,,00 '
AY = 28T (9% Ly 3.68
c2H (H ©0 " > ’ (368)

onde as equagoes de fundo (3.58) e (3.60) também foram usadas. Dado que & = U, (3.67)

pode ser reescrita como

(a2%>/ = W (HE + \I/> : (3.69)

Yo

Finalmente, em termos das novas variaveis

v 55+ Loy (3.70)
U=-————— v=.,/Exa e :
A7t(e + p)V/?’ X 14 ’

(3.68) e (3.69) tornam-se

v

csAu = z <—)/, csv =0 <§)/ (3.71)
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a’(e + p)'/? 1 /871 P\ —1/2
¥ csH CsZ 3 a + € (3.72)

As equagdes (3.71) e (3.72), expressas nas variaveis u e v, fornecem uma forma conveniente

onde

para estudar a evolucao das perturbacoes escalares, permitindo quantizar as flutuagoes do
campo escalar durante a fase inflacionaria e calcular o espectro das nao homogeneidades
primordiais que servem de sementes para a formacao de estruturas no universo.
Substituindo v da segunda equagao em (3.71) na primeira, obtém-se uma equagao dife-
rencial de segunda ordem para u, que descreve a evolugao linear classica das perturbacoes

de um campo escalar homogéneo em um universo FLRW:

/!

u” — 2Vu — %u =0, (3.73)
que é a chamada equacao de Mukhanov-Sasaki, na qual u é a variavel que combina a
amplitude da perturbacgao com fatores do fundo, # depende do condensado homogéneo e
do fator de escala. Fisicamente, esta equacao descreve a evolucao cléssica das flutuacoes
do campo escalar ¢ em torno do campo escalar homogéneo g, cujo potencial efetivo 6 /6
incorpora os efeitos do fundo do universo sobre as perturbacoes, de tal forma que os modos
de comprimento de onda menores que a escala caracteristica do horizonte oscilam livre-
mente enquanto os modos maiores permanecem praticamente congelados, reproduzindo o
comportamento classico das perturbagoes do inflaton e estabelecendo uma conexao direta
com as variaveis de curvatura do fluido hidrodindmico devido a equivaléncia estrutural

das equagoes de evolucao.



Consideragoes finais

O trabalho desenvolvido constitui uma revisao teédrica do formalismo de perturbagoes
cosmolodgicas lineares e fornece as bases para o estudo das perturbagoes no universo pri-
mordial, estabelecendo a estrutura tedrica necessaria para compreender a evolugao das
flutuacoes cosmicas desde suas origens até a formacao de estruturas. A decomposicao em
modos escalares, vetoriais e tensoriais mostrou-se fundamental para isolar os diferentes
graus de liberdade fisicos, enquanto a construcao de variaveis invariantes de calibre foi in-
corporada ao formalismo, seguindo o procedimento padrao para assegurar que as equagoes
resultantes descrevam exclusivamente quantidades com significado fisico.

A anélise das equagoes de Einstein linearizadas permitiu derivar as equagoes que de-
terminam como as flutuagoes evoluem com o tempo, enquanto o estudo das perturbagoes
durante a inflagdo mostrou como essas flutuacoes podem ter se originado no universo pri-
mordial. O trabalho mostra que a formulacao de perturbacoes na cosmologia requer o uso
consistente da Relatividade Geral, utilizando conceitos como a derivada covariante e as
equagoes de Einstein linearizadas para descrever corretamente as flutuagoes no universo
em expansao.

Por outro lado, as perturbagoes cosmologicas sao essencialmente importantes na pes-
quisa na cosmologia por suas aplicagoes na atualidade como no estudo de ondas gravita-
cionais [21] mas também por sua relevancia em modelos de gravidade modificada, como
em [6], [22] e também [5| apoiando-se nos resultados de [10]. Isso evidencia que a com-
preensao das perturbacoes conecta a fisica de alta energia do universo primordial com a

cosmologia observacional.
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Apéndice A

1. Expressoes das grandezas geométricas do espaco-

tempo de fundo e perturbado

Para o fundo

- Simbolos de Christoffel

1
<0>F35 =5 ©) g™ (85 (O)QW + 8, (0)976 -0, (O)Qaﬁ) (A-74)
- Tensor de Ricci
OR,, = 8, OT, — 9, OrA, 4 Opr ©OpA _ Opr Op) (A-75)

- Escalar de curvatura de Ricci
OR = OgfOR (A-76)
- Tensor de Einstein com indices mistos

1
Ogg = OR; - 506 OR (A-77)

Para a parte perturbada até primeira ordem

Escrevendo cada quantidade geométrica como a soma de uma parte de fundo e de uma

parte perturbada e usando (A-74)-(A-77), obtemos que
- Tensor métrico inverso
5g* = — O gon (O)gﬁ”éguy (A-78)
- Simbolo de Christoffel
0Ths = % g (%5% + Dal0gp — Mw) + 69" Vg, 0T, (A-79)
- Tensor de Ricci com indices covariantes
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0Ras = 0r0T5 — 05010y + 6T, T2, + OT7 612, — oT%, OT2, — OT7,612, (A-80)

- Tensor de Ricci com indices mistos
SRG = 69°* O Ry5 + ©g**6Ryg (A-81)
- Escalar de Ricci

R = Dg5R,5 +69*" O R,p (A-82)

2. Relacao entre H y H

@ lda da ada a
= — = --— = — = —— = (q— = H A_
" a adn dt adt = (A-83)

3. Transformacoes de calibre

Agora, para saber como mudam as perturbagoes de uma cantidade A,g, ou seja, 0A,g,

quando fazemos uma transformacao de coordenadas infinitesimal
r® — % =%+ £~ (A-84)

no sistema de coordenadas £ pode ser calculado usando a seguinte regra de transformacao

~ Ox” Ox°
Aa P = TTA z’ s A-85
oF) = o Aus(a?) (A-5)
onde A,p(x”) pode ser decomposto como a soma de uma parte de fundo e uma parte
perturbada, isto é:

Aas(2?) = O Ags(2?) + 6 Aas(). (A-86)

Dessa forma, substituindo (A-84) e (A-86) em (A-85), desenvolvendo o produto e con-
siderando uma aproximacao até primeira ordem — isto é, mantendo apenas os termos

lineares em 0 A e £ obtemos
Fas@) = Oy + 0A0s — O Ay — D46, (A-87)

Agora, nas novas coordenadas z”, o tensor A,z também pode ser decomposto como a

soma de uma parte de fundo e uma parte perturbada, ou seja, podemos escrever

Anp(@) = O A5(3°) + 6 A.5(3") (A-88)
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onde (O)Aag ¢ a parte de fundo que agora depende de z”. Comparando as expressoes
(A-87) e (A-88), temos

O Aus + 0405 — DA — O AET = OA,5(3°) + 6 Aap(@”). (A-89)

Sabendo que 511&5(?) = 511&5(#) e usando o desenvolvimento em primeira ordem de
© Au5(2*), ou seja:
O Aap(a) & O Aap(@) — @ Aag €, (A-90)

obtemos a seguinte lei de transformagao de calibre:
§Aas — 6Aag = 6Aag — D Aag € — DAY — O4, €0 (A-91)

De forma analoga, obtemos as transformacoes de calibre para o campo escalar, campo

vetorial covariante e campo tensorial com indices mistos
SA = 0A=6A— DA ¢ (A-92)

0Aq — 64y = 64, — VA, & — O, (A-93)

SAY — 5A§ _ (O)Ag”ygv _ (O)A’?f;}’g + (O)Agé“"}y. (A-94)



Apéndice B

1. Simbolos de Christoffel

Para modos escalares

00 ™ = ¢/ (B-95)
0T = ¢, (B-96)
oTg, = = — (276 +v) +) (B-97)
0TG5 = ¢,;0" (B-98)
oLg; = = —¢'8} (B-99)
O3 = = (1,30F +1,07) + 10" (B-100)
Para modos vetoriais
S5y Y =0 (B-101)
ST, Vet = 3H.S; (B-102)
Ty v = %(Si,j + Sji — 2H(Fi; + Fji) — (Fij + Fj,i)/> (B-103)
0T Y = —(HS; + S)) 8" (B-104)
STl v = —% ((Flz + Ffz,z)/ — (S — Si,z))5kl (B-105)
OTL V" = —Fpp 350" (B-106)
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Para modos tensoriais

ST, " =0 (B-107)
ST =0 (B-108)
g0 ten _ 1 OHh;; + I B-109
i T _§< ij T ij) (B-109)
STE, =0 (B-110)
SDh ten = —%hgié’“ (B-111)
1
oL o = —= (hmi,j i — hmm) ghm (B-112)
2. Tensor de Ricci misto
Para modos escalares
1
SRy = = <6¢7-1,’ +A¢+ 3(H(¢ +1) + w”)) (B-113)
esc 2
OR ™ = — (@b’ + %cb) (B-114)

3 1 / ! " 1 1
OR = ((2% 6+ ’H(qb v 5¢) AH2G ) — mp) 5i+ (¢ . zp),kja k) (B-115)
Para modos vetoriais

SRY — (B-116)
5R? vet _ 0 (B—ll?)
i ve 1 / / / ' ! '

OR; ™ = _2_a2{ [(Sk —Fp),+ (8- F])k} + 2%[(5’“ =P+ (8- Ff)k] &
(B-118)
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Para modos tensoriais

5R8 ten — 0
0 ten
OR} " =0
6R; " = o (R + 2Hhy,; — Ahy) 5

3. Escalar de Ricci

Para modos escalares

SR — % <A¢> n 37—[<¢>’ + 3¢’> n 6(7—[2 + H’)¢ 43y — zmz))

Para modos vetoriais

SR =0
Para modos tensoriais

SR =0
4. Tensor de Einstein

Para modos escalares

5GU e — % <A¢ —3u (v + Hgb))
560 = = (4 + Ho)

N3

5Gi e = —%((2%' +H2) o+ H (o +20) + 0+ %A(¢ — )i -

(B-119)

(B-120)

(B-121)

(B-122)

(B-123)

(0-9),5%)

(B-124)
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Para modos vetoriais

SCR e — g (B-125)
(SGZO vet _ O (B—126>
i ve 1 / ! / 4 ! ’

5 e — _2_a2{ ((5c— ), + (8- 1), ] +2m[(5c - B), + (5 F),] }5 ‘
(B-127)

Para modos tensoriais

5G8 ten _ 0 (B—128)
5G6 ten — O (B—129)
JGLten = 53 (R + 2Hhjy; — Ahyy) 6™ (B-130)

6. Equacoes de Einstein

Para perturbagoes escalares

A — 3H (Y + Ho) = AnGa*5T = (B-131)
(V' +Ho) , = AnGa*d T} = (B-132)

((2%’ +H) o+ H(o+20) + " + %A(qﬁ —~ w))5;+
—%(¢ — ), 0" = —4rGa*sT; = (B-133)

Para perturbagoes vetoriais
(SZ- - F) M = 167G a5T0 ™ (B-134)
Kl

{ ((Sk =), + (85— B ] +2m| (S = FD) , + (- F) }&‘k — —167Ga*5 T} ™
(B-135)

Para perturbacgoes tensoriais

(P + 2Hhi; — Ahyy) 6% = 167Ga®sT; " (B-136)
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