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RESUMO

Nesta tese, investigamos as restrições observacionais no fundo de neutrinos cósmicos (CNB)

dado pelo cenário estendido Λ CDM (Λ CDM +Neff +
∑

mν + c2
eff + c2

vis + ξν), usando

os últimos dados observacionais de Planck CMB (espectro de potência de temperatura,

baixa polarização e reconstrução de lentes), oscilações acústicas bariônicas (BAOs), o

novo valor local recente da constante de Hubble do Telescópio Espacial Hubble (HST )

e informações da abundância de aglomerados de galáxias (GCs). Nós estudamos as

restrições no background do CNB usando dados CMB + BAO + HST com e sem os

dados de GC. Encontramos ∆Neff = 0, 614 ± 0, 26 com um nível de confiança de 68

por cento quando os dados de GC são adicionados na análise. Não encontramos desvio

significativo para a velocidade do som no quadro de repouso CNB. Também analisamos o

caso particular Λ CDM +Neff +
∑

mν + ξν com os dados observacionais. Nesse cenário,

encontramos ∆Neff = 0, 60 ± 0, 28 a um nível de confiança de 68 por cento. Em ambos

os cenários, não foram encontrados desvios médios para o parâmetro de degenerescência.

Por outro lado, consideramos uma assimetria cosmológica leptônica na forma de neutrinos

e impomos novas sensibilidades esperadas sobre tal assimetria através do parâmetro de

degenerescência (ξν) usando alguns configurações futuras do experimento CMB, como

CORE e CMB-S4. Tomando o cenário padrão com três estados de neutrino, encontramos

ξµ = 0, 05 ± 0, 10 (± 0, 04), de CORE (CMB-S4) em 95 por cento CL, respectivamente.

Além disso, dentro deste cenário, avaliamos a escala de massa dos neutrinos, obtendo

que o esquema de massa da hierarquia normal é privilegiado. Nossos resultados são uma

atualização sobre a assimetria cosmológica leptônica e a escala de massa de neutrino

neste contexto, a partir da qual pode trazer uma perspectiva sobre a hipótese nula para

ξν (e seus efeitos em ∆Neff), onde talvez, ξν pode assumir um valor não nulo de até

95 por cento CL de experiências futuras, como CMB-S4. Finalmente, consideramos a

possibilidade de testar novas partículas leves termalizadas e também restringir possíveis

interações de nova física de neutrinos de Dirac. Muitos modelos de neutrinos de Dirac que

visam abordar a estabilidade de Dirac, a pequenez das massas de neutrinos ou a assimetria

matéria-antimatéria do nosso Universo conferem os parceiros de quiralidade destros νR

com interações adicionais que podem termalizá-los, como é o caso dos bósons Z’ ultraleves.

Discutimos modelos bem motivados para U(1)B−L, através da medida do número efetivo de

graus de liberdade relativísticos no Universo primitivo, Neff . Consideramos uma extensão

do modelo padrão de cosmologia, tipo ΛCDM + Σmν + M
′

z, onde M
′

z é a massa do bóson

Z’. Usando diferentes testes observacionais, descobrimos que
∑

mν < 0.32 eV, Mz′ < 17.2

GeV and meff
ν,sterile < 0.47 eV, que está dentro dos limites de estudos anteriores, incluindo

os resultados de 2018 da colaboração Planck. Além disso, comparamos a sensibilidade do

SPT-3G, Observatório Simons e CMB-S4 a outros experimentos, em particular o LHC.



Key-words: Fundo Cósmico Neutrino. Lepton Asymmetry. Fundo Cósmico de
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ABSTRACT

In this thesis we investigate the observational constraints on the cosmic neutrino background

(CNB) given by the extended ΛCDM scenario (ΛCDM +Neff +
∑

mν + c2
eff + c2

vis + ξν)

using the latest observational data from Planck CMB (temperature power spectrum,

low-polarisation and lensing reconstruction), baryon acoustic oscillations (BAOs), the

new recent local value of the Hubble constant from Hubble Space Telescope (HST ) and

information of the abundance of galaxy clusters (GCs). We study the constraints on the

CNB background using CMB + BAO + HST data with and without the GC data. We

find ∆Neff = 0.614 ± 0.26 at 68 per cent confidence level when the GC data are added in

the analysis. We do not find significant deviation for sound speed in the CNB rest frame.

We also analyze the particular case ΛCDM +Neff +
∑

mν + ξν with the observational data.

Within this scenario, we find ∆Neff = 0.60 ± 0.28 at 68 per cent confidence level. In both

the scenarios, no mean deviations are found for the degeneracy parameter. On the other

hand, We consider a cosmological lepton asymmetry in the form of neutrinos and impose

new expected sensitivities on such asymmetry through the degeneracy parameter (ξν) by

using some future CMB experiment configurations, such as CORE and CMB-S4. Taking

the default scenario with three neutrino states, we find ξµ = 0.05 ± 0.10 (± 0.04), from

CORE (CMB-S4) at 95 percent CL, respectively. Also, within this scenario, we evaluate the

neutrino mass scale, obtaining that the normal hierarchy mass scheme is privileged. Our

results are an update concerning on the cosmological lepton asymmetry and the neutrino

mass scale within this context, from which can bring a perspective on the null hypothesis for

ξν (and its effects on ∆Neff ), where perhaps, ξν may take a non-null value up to 95 percent

CL from future experiments such as CMB-S4. Finally, we consider the possibility of testing

new thermalized light particles and also constraints possible new-physics interactions of

Dirac neutrinos. Many Dirac-neutrino models that aim to address the Dirac stability, the

smallness of neutrino masses, or the matter–anti-matter asymmetry of our Universe confer

the right-handed chirality partners νR with additional interactions that can thermalize

them, which is the case of ultralight Z’ bosons. We discuss well-motivated models for

νR interactions such as gauged U(1)B−L, through measure of the effective number of

relativistic degrees of freedom in the early Universe, Neff . We consider an extension of

the standard model of cosmology, type ΛCDM + Σmν + M
′

z, where M
′

z is the mass of the

Z’ boson. Using different observational tests, we found that
∑

mν < 0.32 eV, Mz′ < 17.2

GeV and meff
ν,sterile < 0.47 eV, which is within the limits of previous studies, including

the 2018 results of the Planck collaboration. Furthermore, we compare the sensitivity

of SPT-3G, Simons Observatory, and CMB-S4 to other experiments, in particular the LHC.
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Chapter 1

Introduction

“I have done a terrible thing, I have postulated a particle that cannot be detected.”

– Wolfgang Pauli (after having postulated the existence of the neutrino, 1930)

1.1. Dark Universe, neutrinos and lepton asymmetry

The existence of a cosmic neutrino background (CνB), which comprises the so-

called relic neutrinos, is a consequence of the thermal history of the universe where the

neutrinos decouple from the rest of the cosmic plasma at kBT ∼ MeV and start streaming

freely. Unlike the cosmic microwave background (CMB), the CνB is yet to be detected

directly, and such a direct detection proves to be difficult [211]. However, indirect mea-

sures have been established by using CMB as well as estimations from the primordial

abundances of light elements. Recently, Follin et al. [212] have interpreted data about

damping of acoustic oscillations of the CMB and they have demonstrated a detection of

the temporal phase shift generated by neutrino perturbations. This detection is the most

model-independent determination of the existence of CνB. The properties the massive

neutrinos play an important role in the dynamics of the universe, inferring direct changes

in important cosmological sources and, consequently, in the determination of cosmological

parameters; see [261,282,294] for reviews. The effects of the relic neutrinos on the CMB

and LSS are only gravitational, as they are decoupled (free-streaming particles) at the

time of recombination and structure formation. The standard parameters that characterize

these effects on cosmological sources are the effective number of species Neff and the total

neutrino mass
∑

mν . Planck team [213], within the ΛCDM +
∑

mν model has constrained
∑

mν < 0.194 eV (from the CMB alone), and Neff = 3.04 ± 0.33 at 95 per cent confidence
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level (CL). The value of Neff via theoretical calculations is well determined within the

framework of the standard model, namely Neff = 3.046 [295]. The evidence of any positive

deviation from this value can be a signal that the radiation content of the Universe is not

only due to photons and neutrinos, but also to some extra relativistic relics, the so-called

dark radiation in the literature, and parametrized by ∆Neff = Neff − 3.046. However, two

phenomenological parameters c2
eff and c2

vis are also introduced to infer properties of the

CνB. Here, c2
eff is the sound speed in the CνB rest frame and c2

vis is the viscosity parameter,

which parameterizes the anisotropic stress. The evolution of standard neutrinos (non-

interacting free-streaming neutrinos) is obtained for c2
eff = c2

vis = 1/3. The CνB properties,

including constraints on c2
eff and c2

vis, have been investigated via different methods and

approaches [214–222]. It is important to mention that these parametrizations were strongly

inspired by pioneer works about dark matter properties [223,224]. From the temperature

power spectrum (TT), the temperature-polarization cross spectrum (TE), the polarization

power spectrum (EE) + low-polarization (lowP) + baryon acoustic oscillations (BAOs),

the Planck collaboration [213] has constrained c2
eff = 0.3242±0.0059 and c2

vis = 0.31±0.037.

Recently, within the ΛCDM +c2
eff + c2

vis +
∑

mν model, [222] have reported the constraints

c2
eff = 0.309 ± 0.013 and c2

vis = 0.54+0.17
−0.18 at 95 per cent CL from CMB + lensing + BAO

data. In general terms, measuring a deviation from (c2
eff , c

2
vis) = 1/3 can refute the null

hypothesis that the relic neutrinos are relativistic and free-streaming. Another natural

extension of the physics properties of the neutrino is to consider a certain degree of

lepton asymmetry (a cosmological leptonic asymmetry), which is usually parametrized

by the so-called degeneracy parameter ξν = uν/Tν0 [282, 304, 308, 310, 311], where uν is

the neutrino chemical potential and Tν0 is the current temperature of the CνB, such

that Tν0/TCMB = (4/11)1/3. The leptonic asymmetry also shifts the equilibrium between

protons and neutrons at the Big Bang Nucleosynthesis (BBN) epoch, leading to indirect

effects on the CMB anisotropy through the primordial helium abundance YHe. The effects

of the massive neutrinos and a leptonic asymmetry on BBN and CMB have been investi-

gated in many studies [225,226,260,273,288,289,291–293,301,319]. Recently, a leptonic

asymmetric model of cosmological data are reported at 95 per cent CL by [273].

The lepton asymmetry of the Universe, represented by neutrinos and anti-neutrinos,

is nowadays one of the most weakly constrained cosmological parameter. Although the

baryon number asymmetry is well measured from CMB constraints concerning the baryon

density, the lepton asymmetry could be larger by many orders of magnitude and not of

the same order as expected by the Big Bang BBN considerations. The presence of a large

lepton asymmetry can be considered as an excess of the neutrinos over anti-neutrinos

or vice-versa, which can be a requirement due to the charge neutrality of the Universe.

Also it might possibly be hidden in the CνB, and can have imprints on cosmological

observations. For instance, from CMB anisotropy [275,301], the large neutrino asymmetries
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have consequences in the early Universe phase transitions, cosmological magnetic fields

and dark matter relic density (see [307,309,312] for more details). Other effects due to

the lepton asymmetry can be considered as changes in the decoupling temperature of

CνB [285,290], the time equivalence between the energy densities of radiation and matter,

the production of primordial light elements at BBN [306], an excess in the contribution of

the total radiation energy density and the expansion rate of the Universe [286], photon

decoupling [293], among others. These changes can affect the evolution of the matter

density perturbations in the Universe, which effect not only on the CMB anisotropies,

but also the formation, evolution and distribution of the large scale structure (LSS) of

the Universe [295]. The LSS formation is more sensitive to the neutrino masses than

CMB. The formation of the structures is driven by the cosmic expansion and self-gravity

of matter perturbations, both affected by the massive neutrinos. Nevertheless, the relic

neutrinos slow down the growth of structures due to their high thermal speeds, leading

to a suppression of the total matter power spectrum [264]. On the other hand, the

gravitational lensing of CMB and the integrated Sachs-Wolf effect are also modified by

the presence of massive neutrinos [261]. The effect of massive neutrinos in the nonlinear

growth structure regime has recently been studied by [321]. The properties of neutrinos are

very important in the determination of the dynamics of the Universe inferring direct effects

on cosmological sources, and consequently the estimation of cosmological parameters

(see [261,277,280,282,287,294,296,297,313–318,320]). Finally, and more important for

the present thesis, is to consider the aforementioned cosmological lepton symmetry, which

is another natural extension of the neutrino physics properties. As we already mentioned,

this property is usually parameterized by the degeneracy parameter ξν = uν/Tν0, where

Tν0 ≈ 1.9K [282, 304, 308, 310, 311]. We can assign to chemical potentials a label of its

eigenstates of mass, such that {ui} is for neutrinos and {−ui} for anti-neutrinos. If the

neutrinos are Majorana particles, then they must have ui = 0, otherwise neutrinos are Dirac

fermions. Thus, evidence on the null hypothesis is needed to answer this question [298].

The difference between {ξi} and {−ξi} determines the asymmetry between the density of

neutrinos and anti-neutrinos. Then, the presence of a relevant and non-zero ξν have some

cosmological implications [260, 273, 288, 289, 291–293, 301, 304, 308, 310, 311, 319]. From

the particle physics point of view, the lepton asymmetry measurement of the Universe is

crucial to understand some of the particle physics processes that might have taken place

in the early Universe at high energies, including the better constraint on models for the

creation of matter-antimatter asymmetry in the Universe [263, 271, 274]. The tightest

constraints on lepton asymmetry at present are commonly based on a combination of

CMB data via constraints on the baryon density and measurements of the primordial

abundances of light elements [278,298,311].

The Standard Model (SM) of particle physics is a very successful description of
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the subatomic Universe, connecting the weak, strong, and electromagnetic forces to the

framework of gauge symmetries. Only the latter two are unbroken symmetries, i.e., bring

conserved quantum numbers, color, and electric charge, respectively.1 The search for

additional forces has always driven particle physics but has so far not been successful,

resulting in tight bounds either on the strength or range of the new force. Today’s research

focuses almost exclusively on spontaneously broken new gauge symmetries, mimicking the

success of the electroweak theory. The only classically conserved quantities in the SM of

particle physics are the Baryon and lepton numbers, considering that the lepton mixing

pattern observed in neutrino oscillations proves the non-conservation of the individual

lepton numbers Le,µ,τ , or linear combinations thereof. Ignoring new forces that do not act

on SM particles, e.g., unbroken hidden forces in the dark matter sector, it is clear that the

only new exact symmetry can be a linear combination of B and L. Classical symmetries of

the Lagrangian can be broken at the quantum level through triangle anomalies, which

have to be canceled to obtain a valid quantum field theory. For B - L, the anomalies can

be canceled simply by introducing three SM-singlet right-handed neutrinos νR, which auto-

matically lead to massive active (Dirac) neutrinos, which is very convenient and welcome.

Gauging any other linear combination X of B and L would require the introduction of chiral

fermions charged under SU(2)L × U(1)Y and is by now possible only if X is spontaneously

broken to generate fermion masses above (and disconnected from) the electroweak scale.

U(1)B−L hence Presents itself as the only possible unbroken gauge symmetry acting on

known particles beyond electromagnetism and color. This is further corroborated by the

fact that we have yet to observe any B - L violating process despite extensive decades of

searching, most prominently the search for ∆(B − L) = 2 neutrinoless double beta decay.

Even the baryon asymmetry of our Universe is no argument for breaking B - L, because

the Dirac nature of neutrinos gives rise to an elegant leptogenesis mechanism under the

name of neutrinogenesis even for conserved B - L. This scenario has rarely been considered;

new "fifth" forces coupled to baryon number, lepton number, or B - L have, of course, been

studied before, but never as unbroken, and hence never with Dirac neutrinos. Therefore,

exploring the implications of an unbroken U(1)B−L symmetry as an alternative point of

view to direct searches for B - L violation is worthwhile. This last will be of great impor-

tance in the following, as the coupling to light right-handed neutrinos severely constrains

the new force. We consider a generalized model UV-SM completion with the attributes of

a B −L model in addition to the charges from an alignment with SM hypercharge leading

parameter β. This linear superposition has chiral anomalies cancellation predicting three

RHNs (one per generation) and hence the same minimal particle content of the minimal

B − L. This model will have a new framework with predictions testable in the current

and subsequent experiments detecting neutrinos and dark matter interactions. Besides

the B − L motivations, as the presence of a neutrino mass generation mechanism and

portals as Z ′, and leptogenesis scenarios, the U(1) model has an impact in explaining the
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thermalization of new RHN. We expect additional dynamical behavior of an extended

model νR describes crucial scenarios in the smallness of neutrino masses, generating the

observed matter–anti-matter asymmetry of our Universe, and protecting the Dirac nature

from quantum gravity. All of these new νR interactions will then face strong constraints

from cosmic intensity experiments (like CMB-S4) that will make it difficult to see the

portals like Z ′ in any other intensity (e.g., SHiP or DUNE) or energy frontier (e.g., LHC)

complexes. We assume GR and the ΛCDM to do cosmological analyses. Besides, we

consider that the reheating temperature of the Universe reached at least the mass of the

Z ′ mediators that couple to RHS.

1.2. Outline of the thesis

In this thesis, we consider the extension of the minimal ΛCDM model, provided

with some free parameters like the number of relativistic degrees of freedom in the early

universe, the non-relativistic neutrino mass, the sound speed and the viscosity of the CνB;

and so we derive observational constraints on the additional five neutrinos parameters

that can characterize the properties of the cosmic neutrino background. For this purpose,

we consider data from CMB observed by Planck 2015, BAOs, the recent local value of the

Hubble constant from Hubble Space Telescope (HST ) and information from the abundance

of galaxy clusters (GCs), BBN, among other. In addition to this, we want to obtain

new and precise limits on the cosmological lepton asymmetry, in terms of the degeneracy

parameter ξν , as well as the neutrino mass scale, considering the configurations of future

CMB experiments such as CMB-CORE and CMB-S4. On the other hand, we also analyze

the introduction of 1, 2 and 3 right-hand neutrinos, including the mass and the coupling

of the Z’ boson, as a particle that functions as a portal between the electromagnetic world

and the dark sector.

To this end, in my thesis the first six chapters are a review that supports the main

results of the last chapters and are organized as follows: In Chapter 2, I provide a review

of the standard model of cosmology, starting with its foundations in general relativity and

pointing towards currently significant observational tensions such as that of the Hubble

parameter. In the Chapter 3, I briefly analyze the standard model of particle physics,

with particular emphasis on neutrino physics, and its main problems in this scheme, which

brings us to physics beyond the standard model in the leptonic sector. Next, in Chapter

4, I review the history of neutrinos in early times, as well as an interplay between the

BBN epoch and recombination. In Chapter 5, I present a review of the anisotropies of

the CMB, always emphasizing the implications of relativistic and massive neutrinos in
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what will be used more forward as one of the main cosmological tests. Before reaching

our main results, in the Chapter 6, I review the presence of neutrinos in the large-scale

structure of the universe, emphasizing the suppression effects they produce in the power

spectrum of matter. The heart of this thesis is Chapters 7, 8 & 9, where I addressed the

main fundamental physical properties of relic neutrinos, analyzed in the light of the most

recent observational evidence and future experiments and the introduction of right-hand

neutrinos, and a new boson, which will provide a new portal between the light sector and

the dark sector, namely the standard model of particle physics and the standard model

of cosmology. Finally, in Chapter 10, I present the main conclusions of this thesis and

provide an outlook for future work.
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Chapter 2

Particle cosmology and beyond

“There are more things in heaven and earth, Horatio, than are dreamt of in your

philosophy.” – Hamlet to Horatio in Hamlet, William Shakespeare (1603)

In this chapter, I will review in some detail the physical foundations of the two pillars of

physical cosmology, namely the standard model of cosmology and the standard model of

particle physics, which together lead to the concept of particle cosmology, in both cases,

making special emphasis on the fundamental physical properties of neutrinos in both cases,

making special emphasis on the fundamental physical properties of neutrinos and on what

is currently called physics beyond the standard model (particle/cosmology).

2.1. Fundamentals of General Relativity

The essence of the theory of general relativity (GR) is based on Einstein’s field equations

(EFE):

Gµν =
8πG

c4
Tµν , (2.1)

where Gµν represents the Einstein tensor, which describes the geometric properties of

spacetime, and Tµν is the energy-momentum or stress-energy tensor, which includes

contributions from the various sources of matter and energy, supported in the background

of spacetime. G and c are Newton’s constant of universal gravitation and the speed of light

in vacuum, respectively. Starting from the principle of equivalence between inertial mass

and gravitational mass (mG/mI = 1)1, Einstein postulated the idea that gravitation is a

1 The principle states that: a system immersed in a gravitational field is punctually indistin-
guishable from an accelerated non-inertial reference frame. Around 1889, Loránd Eötvös
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manifestation of the curvature of space-time, and that this curvature would be determined

by all forms of matter-energy.

Motivated by the geometrization of the force of gravity, Einstein’s field equations

can be obtained from the following well-motivated and established postulates:

1. The spacetime variety: Spacetime is constituted by all physical events, described

by the pair (M, g), where M is a smooth 4-dimensional manifold and g is a

Lorentzian metric on M.

On the variety M are defined all the fields of matter considered, for example, the

electromagnetic field, the neutrino field, scalar field,..., etc., which describe the

content of matter in spacetime. The fields of matter obey equations expressed as

relations between tensors on M. The derivatives with respect to the coordinates are

covariant derivatives, concerning the symmetric connection defined by the metric g.

If we denote the fields of matter included in the theory by Ψα
(i)γ , where the sub-index

i denotes the different fields of matter, then the following two postulates about the

nature of the fields Ψα
(i)γ are common to the special theory and the general theory of

relativity:

2. Local causality: The equations that obey the fields of matter must be such that,

if U ⊂ M is a convex neighborhood and p, q ∈ U , then a signal can be sent in U
between p and q if and only if p and q can be joined by a c1 − curve contained in U ,

whose tangent vector everywhere is different from zero and is like of time or like of

light (This curve is called non-space like).

Another equivalent way of establish the postulate, and more physically significant,

can be given in terms of the Cauchy problem for fields of matter: Let p ∈ U such

that every non-space curve through p intersects the surface as of space x0 = cte.

inside U . Let F be the set of points on the hypersurface x0 = cte., which can be

reached by non-space curves in U through p. Then, it is required that the values of

the material fields in p must be uniquely determined by the values of the field and

its derivatives to a finite order on F . That is, the equations of motion (differential

equations) that determine the fields (laws of physics) involve derivatives up to a finite

order n (usually up to order 2) have a unique solution, which is determined by the

boundary conditions, that is, the value of the fields and their first n− 1 derivatives,

given on a hypersurface intersected by the cone of light passed from point p.

3. Local energy conservation: There is a symmetric tensor Tµν = Tµν (Ψi,∇Ψi) =

Tνµ which is a function of the fields of matter and their derivatives, up to a finite

order, such that:

established experimentally that there was no apparent difference between gravitational mass
and inertial mass, with an accuracy of one part in 20 million.
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a) Tµν = 0 over U ⊂ M open, if and only if Ψi = 0 for all over U .

b) T µν
;ν = 0

The first condition expresses that all fields of matter contribute to energy. From the

second condition, if the space-time manifold admits a Killing K vector field then,

we obtain a conservation law, since let be:

pα = TαβKβ, (2.2)

the components of the vector P obtained by contracting the momentun-energy tensor

with the Killing field, then

pα
;α = Tαβ

;α Kβ + TαβKβ;α, (2.3)

since T µν
;ν = 0 and K satisfies the Killing equation, i.e., K(α;β) = 0. Thus, if D is a

compact and orientable region, by Gauss’s theorem we have that

∫

∂D
Pαdσα =

∫

D
Pα

;αdv = 0. (2.4)

Therefore, this result can be interpreted physically, since the flow of the component

of the momentun-energy tensor in the direction of the Killing field on a closed surface

is canceled, which is the generalization of Noether’s theorem, which states that

to all symmetry corresponds a conservation law. In the particular case of the flat

Lorentzian manifold, associated with the ten linearly independent Killing vectors are

the ten usual conservation laws, for energy, momentum and total angular momentum.

Another no less important question are the equations of motion, which is represented by

the geodesic equation, which in some coordinate basis is represented as:

d2xα

dλ2
+ Γα

βγ

dxβ

dλ

dxγ

dλ
= 0, (2.5)

where λ is known as the affine parameter of a geodesic curve and

Γα
βγ =

1

2
gαµ

(

∂gµβ

∂xγ
+
∂gµγ

∂xβ
− ∂gβγ

∂xµ

)

, (2.6)

are known as Christoffel symbols, and gβγ is the metric tensor in some coordinate base.

On the one hand, if we consider the causality postulate, it places the metric g apart from

the other fields of matter on M, given its special geometric character. on the other hand,

the equivalence principle establishes the existence of an accelerated system where the

gravitational field is not detected, that is, it is punctually null. This accelerated system
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is precisely the one in which the Christoffel symbols of the metric cancel out, that is:

Γα
βγ|p = 0. This fact, together with the fact that the Lagrangian must be a physical scalar

independent of the chosen reference frame, means that the Lagrangian of the gravitational

field cannot be formed exclusively from the metric tensor and the Christoffel symbols,

since because this is null for the previously considered coordinate system, the variation

would be identically null for all observers, which does not make physical sense.

The possibility of choosing an accelerated reference system where the Christoffel

symbols are null implies that the Lagrangian of the relativistic gravitational field must be

formed by derivatives of higher order than one of the metric tensor and, therefore, the

equivalence principle implies that the Lagrangian must be some scalar related to curvature.

Indeed, the most common way to write the Lagrangian of the gravitational field is:

LG =
c3

16πG
R

√−g, (2.7)

where R is the Ricci scalar, g = |gµν | is the determinant of the metric tensor. On the other

hand, the causality and conservation postulates do not tell us how to construct T µν for a

set of given matter fields. However, there is a unique and well-defined way to calculate

the momentum-energy tensor, if the equations of motion for the fields are derived from a

Lagrangian, as is the case for the usual fields of matter and of physical interest.

Let LM be the Lagrangian density, which is a function of the matter fields Ψi, their

covariant derivatives, up to a finite order and of the metric. Then, the equations of motion

of the fields are obtained from the action:

S =
∫

LMdv. (2.8)

Demanding that S is stationary under variation of the fields within a compact 4-dimensional

region D, i.e., δS = 0. This condition leads to the Euler-Lagrange equations:

∂LM

∂Ψi

− ∂LM

∂ (∇Ψi)
= 0. (2.9)

The momentun-energy tensor is obtained from the Lagrangian density LM , considering

the variations of the action under changes in the metric:

Tµν ≡ 2√−g
δS

δgµν
. (2.10)

For example, a scalar field φ(x), which represents scalar particles of mass m, with no
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charge and zero spin, is described by the Lagrangian density

LM =
1

2

√−g
(

gµνφ;µφ;ν −m2φ2
)

, (2.11)

where units of ~ = 1 and c = 1 have been used. The Euler-Lagrange equations for this

system lead to the Klein-Gordon equation:

(

� +m2
)

φ = 0, (2.12)

where the D’alembertian is given by: �φ = gµνφ;µν , and the momentum-energy tensor is:

Tµν = φ;µφ;ν − 1

2
gµν

(

gγδφ;γφ;δ +m2φ2
)

. (2.13)

So far the metric g has not been specified. In the special theory of relativity, which does

not include gravitational effects, the metric is flat, i.e., g = η. As mentioned above, the

force of gravity, due to its universal character, must be excluded as a field of forces in a

flat space, if we want to maintain the idea that a free particle follows "straight lines" or

that the speed of light in the vacuum is constant. To maintain the principle of relativity,

that is, physics is the same for all observers, or equivalently, the laws of physics must be

independent of the coordinate system, the field equations that determine the metric must

be tensor relations, which involve matter through the momentun-energy tensor, if we want

to maintain the equivalence principle, that is, if two fields of matter contribute the same

energy density to a system, then the field equations for the metric must lead to same result.

On the geometry side, as Hilbert suggested to Einstein, the only geometric object, except

identities or multiples, which is determined by the metric tensor and first derivatives of its

components, is the Riemann tensor, or tensors derived from them, and therefore the only

possibility, is a linear combination of the Ricci tensor, the scalar curvature and a constant,

proportional to the momentum-energy tensor, given the conditions imposed on it, which

is symmetric and satisfies the principle of local conservation, so:

Einstein’s field equations (2.1) and equations of motion (2.5) can be obtained from

first principles through the well-known Einstein-Hiltber action:

S =
∫ √−g

[

1

2κ
(R + Λ) + LM

]

d4x, (2.14)

where κ = 8πG/c4, R is the Ricci scalar and in this case we include the effects of the

cosmological constant Λ. Thus, the EFE including the cosmological constant take the

form:

Rµν − 1

2
gµνR + Λgµν =

8πG

c4
Tµν , (2.15)



13

where from Eq. (2.1)

Gµν = Rµν − 1

2
gµνR (2.16)

and Rµν is the Ricci tensor. This is a system of 10 nonlinear coupled differential equations

for the metric and its first derivatives. However, since the covariant divergence of each

side of the equations (2.15) is satisfied independently:

(Gµν + Λgµν);ν =
8πG

c4
T µν

;ν = 0. (2.17)

Then, the number of independent equations is reduced to six. This is the correct number

of equations, since of the ten independent components of the metric tensor, four of them

can be chosen arbitrarily, since it corresponds to the fact that the components of the

metric tensor are unique, except for a coordinate transformation. Thus, Einstein’s field

equations (2.15) determine the metric tensor gµν , depending on the physical system to

analyze, i.e., neutron stars, black holes, solar system dynamics,...etc.

So far we have made very general considerations about the fields of matter and

the geometry of space-time. In what follows, we are going to apply these fairly general

considerations of the geometry of space-time and matter fields to our object of study of

interest, namely the standard model of cosmology and neutrino matter fields. In cosmology,

which is the metric which describes the universe and what is the matter content? It turns

out that both questions are very difficult to answer and, indeed, there are no still clear

answers, as we stressed in the following sections and next chapters.

2.1.1 Friedmann-Lemaître-Robertson-Walker metric

The metric used to describe the universe on large scales is the Friedmann-Lemaître-

Robertson-Walker (FLRW) metric. The fundamental hypothesis on which the standard

model of cosmology is based is the cosmological principle, which establishes that on

a large scale the universe is homogeneous and isotropic. This means that the observed

universe is the same for any observer, regardless of the point from which it is being

observed or the direction, that is, on a large scale, the distribution of matter in the

universe (the density of galaxies and their movement) is independent of the direction and

the place from which it is observed. The cosmological hypothesis is based on observing

the distribution of galaxies and cosmic background radiation. Einstein’s field equations

allow us to describe the geometry of space-time, determined by the distribution of matter

in the universe. The simplest way to describe the distribution of matter in the universe

that satisfies the cosmological principle is the model of the perfect fluid, where galaxies

are the particles which constitutes the perfect fluid. As in fluid dynamics, where matter is
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made up of particles, it is assumed that the observation scales are large enough so that the

volume element contains a sufficient number of particles and the fluid, seen as a continuous

distribution of matter, is a good approximation to describe the dynamics of this system.

A more formal definition can be found in [194]. Before solving Einstein’s equations for this

model of the universe, the symmetry arguments established by the cosmological principle

allow us to advance in the general form of the metric, independently of the explicit form

of the momentum-energy tensor that describes the matter in the universe. To find the

most general form of the metric that satisfies the cosmological principle, we will establish

the following hypotheses, as a starting point:

1. Weyl’s postulate: The universe lines of galaxies form a geodesic bundle {Γ} that do

not intersect and are orthogonal to a family of hypersurfaces {Σ} as of space.

2. Each hypersurface {Σ} has a time coordinate x0.

3. Each hypersurface {Σ} is locally isotropic.

4. Every pair of points on each hypersurface {Σ} are equivalent.

5. The global metric and all the cosmic tensors such as the stress-energy one Tµν are

form-invariant with respect to the isometries of those subspaces.

We shall come back in a moment to maximally symmetric spaces. Roughly speaking, the

second requirement above means that the matter quantities can depend only on the time.

The cosmological principle seems to be compatible with observations at very large

scales. On a scale of about 100 h−1 Mpc the rms density fluctuations are at the level of

∼10% and on scales larger than 300 h−1 Mpc the distribution of both mass and luminous

sources safely satisfies the cosmological principle of isotropy and homogeneity [206]. In a

recent work [160] find that the quasar distribution is homogeneous on scales larger than 250

h−1 Mpc. Moreover, numerical relativity seems to indicate that the average evolution of a

generic metric on large scale is compatible with that of FLRW metric [70]. The CfA2 red-

shift survey produce the first large area and moderately deep maps of large scale structure

in the nearby universe, as well as the first crude but truly quantitative measurements of the

3-D clustering properties of galaxies. Redshifts are the simplest link to determine galaxy

distances. This initial map was quite surprising, showing that the distribution of galaxies

in space was anything but random, with galaxies actually appearing to be distributed on

surfaces, almost bubble like, surrounding large empty regions, or "voids", where we can

identify the “Great Wall”, with the Coma cluster at the centre2. Drawn to the same scale is

a small section of the Sloan Digital Sky Survey (SDSS) [1], in which an even larger “Sloan

2 http://tdc-www.harvard.edu/zcat/
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Great Wall” has been identified. This is one of the largest observed structures in the Uni-

verse, containing over 10,000 galaxies and stretching over more than 1.37 billion light years.

The wedge of the 2dFGRS [2], which determined distances to more than 220,000 galaxies in

the southern sky out to a depth of 2 billion light years. The SDSS has a similar depth but a

larger solid angle and currently includes over 650,000 observed redshifts in the northern sky.

On the other hand, the mock galaxy surveys constructed using semianalytic tech-

niques to simulate the formation and evolution of galaxies within the evolving dark matter

distribution of the “Millennium” simulation [3] are made by selecting matching survey

geometries and magnitude limits. The Illustris project is a large cosmological simulation

of galaxy formation, completed in late 2013, using a state of the art numerical code and

a comprehensive physical model3. In the Fig. 1, we can see the predicted large-scale

structure of galaxies, which was studied for the first time with hydrodynamical simulations

of this type thanks to their large enough volume. They form a cosmic web composed of

gas and stars and feature galaxies at their intersections which not only match the shapes

and sizes of real galaxies very well but also reproduce the observed spatial clustering

pattern as seen in the newest data of extensive galaxy surveys. This match persists when

the galaxies are separated into different subsamples according to color and stellar mass.

Additionally, the simulations make precise forecasts about how the cosmic web, as traced

by galaxies, evolves in time and relates to the underlying backbone of cosmic structure

made up of dark matter. t is particularly fascinating that we can accurately predict

the influence of supermassive black holes on the distribution of dark matter on large

scales and therefore, the insights gained with IllustrisTNG are crucial for the reliable inter-

pretation of future cosmological data that aim for precision tests of our cosmological model.

According to the cosmological principle, the constant-time spatial hypersurfaces

are maximally symmetric.4 A maximally symmetric space is completely characterised

by one number only, i.e. its scalar curvature, which is also a constant. See [194, Chapter 13].

Let R be this constant scalar curvature. The Riemann tensor of a maximally

symmetric D-dimensional space is written as:

Rµνρσ =
R

D(D − 1)
(gµρgνσ − gµσgνρ) . (2.18)

3 https://www.illustris-project.org/
4 This means that they possess 6 Killing vectors, i.e. there are six transformations which leave

the spatial metric invariant [194].
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Figure 1 – LSS IllustrisTNG-Simulations. The gas velocity in a thin sílice of 100 physical
Kilo-Parsecs, centered on the second most massive galaxy cluster in the TNG100 calcu-
lations. The image contrasts the gas motions in cosmic filaments against the fireball of
motions triggered by the deep gravitational potential well and the supermassive Black hole
sitting at its center. Where the image is black, the gas hardly moves, while White regions
have velocities exceeding 1000 Km/s. CREDIT: c©ILLUSTRISTNG COLLABORATION
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Contracting with gµρ we get for the Ricci tensor:

Rνσ =
R

D
gνσ , (2.19)

and then R is the scalar curvature, as we stated, since gνσgνσ = D. Since any given

number can be negative, positive or zero, we have three possible maximally symmetric

spaces. Now, focusing on the 3-dimensional spatial case:

1. ds2
3 = |dx|2 ≡ δijdx

idxj, i.e. the Euclidean space. The scalar curvature is zero, i.e.

the space is flat. This metric is invariant under 3-translations and 3-rotations.

2. ds2
3 = |dx|2 + dz2, with the constraint z2 + |x|2 = a2. This is a 3-sphere of radius

a embedded in a 4-dimensional Euclidean space. It is invariant under the six

4-dimensional rotations.

3. ds2
3 = |dx|2 − dz2, with the constraint z2 − |x|2 = a2. This is a 3-hypersphere, or a

hyperboloid, in a 4-dimensional pseudo-Euclidean space. It is invariant under the

six 4-dimensional pseudo-rotations (i.e. Lorentz transformations).

Let us write in a compact form the above metrics as follows:

ds2
3 = |dx|2 ± dz2 , z2 ± |x|2 = a2 . (2.20)

Differentiating z2 ± |x|2 = a2, one gets:

zdz = ∓x · dx . (2.21)

Now put this back into ds2
3:

ds2
3 = |dx|2 ± (x · dx)2

a2 ∓ |x|2 . (2.22)

In a more compact form:

ds2
3 = |dx|2 +K

(x · dx)2

a2 −K|x|2 , (2.23)

with K = 0 for the Euclidean case, K = 1 for the spherical case and K = −1 for the

hyperbolic case. The components of the spatial metric in Eq. (2.23) can be immediately

read off and are:

g
(3)
ij = δij +K

xixj

a2 −K|x|2 . (2.24)
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Writing the metric (2.23) in spherical coordinates, we U use the fact that |dx|2 = dr2+r2dΩ2,

where

dΩ2 ≡ dθ2 + sin2 θdφ2 , (2.25)

and making use of:

x · dx =
1

2
d|x|2 =

1

2
d(r2) = rdr . (2.26)

we arrive at the following expression:

ds2
3 =

a2dr2

a2 −Kr2
+ r2dΩ2 (2.27)

If we normalise r → r/a in metric (2.27), we can write:

ds2
3 = a2

(

dr2

1 −Kr2
+ r2dΩ2

)

, (2.28)

and letting a to be a function of time, we finally get the FLRW metric:

ds2 = −c2dt2 + a2(t)

(

dr2

1 −Kr2
+ r2dΩ2

)

. (2.29)

The time coordinate used here is called cosmic time, whereas the spatial coordinates are

called comoving coordinates. For each t the spatial slices are maximally symmetric;

a(t) is called scale factor, since it tells us how the distance between two points scales

with time. The FLRW metric was first worked out by Friedmann in [66] and [67] and then

derived on the basis of isotropy and homogeneity by Robertson and Walker in [154], [155]

and [189]. Lemaître’s work [98] had been also essential to develop it.5 A further comment

concerning FLRW metric (2.29) is in order here. The dimension of distance is being

carried by the scale factor a itself, since we rescaled the radius r → r/a. Indeed, as we

computed earlier, the spatial curvature is R(3) = 6K/a(t)2, also time-varying, and it is a

real, dimensional number as it should be. A very useful form of rewriting FLRW metric

(2.29) is via the conformal time η:

adη = dt ⇒ η − ηi =
∫ t

ti

dt′

a(t′)
. (2.30)

5 See also [99] for a recent republication and translation of Lemaître’s 1933 paper.
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As we shall see later, but as we already can guess from the above integration, c(η − ηi)

represents the comoving distance travelled by a photon between the times ηi and η, or ti

and t. The conformal time allows to rewrite FLRW metric (2.29) as follows:

ds2 = a(η)2

(

−c2dη2 +
dr2

1 −Kr2
+ r2dΩ2

)

(2.31)

i.e. the scale factor has become a conformal factor (hence the name for η). Recalling the

earlier discussion about dimensionality, if a has dimensions then cη is dimensionless. On

the other hand, if a is dimensionless, then η is indeed a time. Note also that metric (2.31)

for K = 0 is Minkowski metric multiplied by a conformal factor.

Another useful way to write FLRW metric (2.29) is using the proper radius,

which is defined as follows:

D(t) ≡ a(t)r . (2.32)

We shall discuss in more detail the proper radius, or proper distance, in Sec. 2.3.1. Using

D instead of r, the FLRW metric (2.29) becomes:

ds2 = −c2dt2
(

1 −H2 D2/c2

1 −KD2/a2

)

− 2HDdtdD
1 −KD2/a2

+
dD2

1 −KD2/a2
+ D2dΩ2 , (2.33)

where

H ≡ ȧ

a
(2.34)

is the Hubble parameter. The dot denotes derivation with respect to the cosmic time.

2.1.2 Christoffel symbols and geodesics

If we assume K = 0 in metric (2.29), rewrite it in Cartesian coordinates and calculate the

Christoffel symbols, we have:

Γ0
00 = 0 , Γ0

0i = 0 , Γ0
ij =

aȧ

c
δij , Γi

0j =
H

c
δi

j . (2.35)
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We now use these in the geodesic equation (2.5):

dP µ

dλ
+ Γµ

νρP
νP ρ = 0 , (2.36)

where P µ ≡ dxµ/dλ is the four-momentum and λ is an affine parameter. For a particle of

mass m, one has λ = τ/m, where τ is the proper time. The norm of the four-momentum

is:

P2 ≡ gµνP
µP ν = −E2

c2
+ p2 = −m2c2 , (2.37)

where we have defined the energy and the physical momentum (proper momentum):

E2

c2
≡ −g00(P

0)2 , p2 ≡ gijP
iP j , (2.38)

and the last equality of Eq. (2.37), which applies only to massive particles, comes from:

ds2

dλ2
=
m2ds2

dτ 2
= −m2c2 , (2.39)

since, by definition, ds2 = −c2dτ 2. We have recovered above the well-known dispersion

relation of special relativity. The metric gµν used above is, in principle, general. But, of

course, we now specialise it to the FLRW one.

For a photon, m = 0 and E = pc. The time-component of the geodesic equation is

the following:

dP 0

dλ
+
aȧ

c
δijP

iP j = 0 . (2.40)

Introducing the proper momentum as defined in Eq. (2.38), one gets:

dp

dλ
+Hp2 = 0 . (2.41)

Therefore, we can write:

Eobs

Eem

=
aem

aobs

. (2.42)

On the other hand the photon energy is E = hf , with f its frequency. Therefore:

aem

aobs

=
Eobs

Eem

=
fobs

fem

=
λem

λobs

=
1

1 + z
. (2.43)

This is the relation between the redshift and the scale factor. We have connected observation

with theory. Usually, aobs = 1 and the above relation is simply written as 1 + z = 1/a.
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What does happen, on the other hand, to the energy of a massive particle? The

time-geodesic equation for massive particles is identical to photons, but the dispersion

relation is different, i.e., E2 = m2c4 + p2c2. Therefore:

E =

√

m2c4 +
p2

i a
2
i c

2

a2
, (2.44)

where pi is some initial proper momentum, at the time ti and ai = a(ti). For m = 0 we

recover the result already obtained for photons. For massive particles the above relation

can be approximated as follows:

E = mc2

(

1 +
p2

i a
2
i

2a2m2c2
+ . . .

)

, (mc ≫ p) , (2.45)

i.e., performing the expansion for small momenta which is usually done in special relativity.

The second contribution between parenthesis is the classical kinetic energy of the particle,

whose average is proportional to kBT . Therefore:

T ∝ a−1 , for relativistic particles, (2.46)

T ∝ a−2 , for non-relativistic particles. (2.47)

We shall recover the above result also using the Boltzmann equation.

2.2. Friedmann equations

Given FLRW metric, Friedmann equations can be straightforwardly computed from the

Einstein equations (2.15). If we calculate from FLRW metric 2.29 the components of the

Ricci tensor, we have:

R00 = − 3

c2

ä

a
, R0i = 0 , Rij =

1

c2
gij

(

2H2 +
ä

a
+ 2

Kc2

a2

)

, (2.48)

and the scalar curvature is:

R =
6

c2

(

ä

a
+H2 +

Kc2

a2

)

. (2.49)

Finally, we compute the Einstein equations:
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H2 +
Kc2

a2
=

8πG

3c2
T00 +

Λc2

3
(2.50)

gij

(

H2 + 2
ä

a
+
Kc2

a2
− Λc2

)

= −8πG

c2
Tij (2.51)

These are called Friedmann equations. ¿But, which is stress-energy tensor Tµν that we

must use with Eqs. 2.50 and 2.51 and that are compatible with the cosmological principle?.

First, let me make some general considerations about fluid mechanics. The kine-

matical properties of a fluid element are determined by its velocity, acceleration, shear, and

vorticity. All these quantities are defined in the space-time, and for convenience one uses

comoving coordinates, that is Lagrangian coordinates that follow the flow motion or Hubble

flow in our case. In principle, one splits the space-time structure into surfaces of simul-

taneity to rest frame observers, with a projected metric on the surface hµν = gµν + uµuν ;

where uµ are the components of the four velocity u. In this frame it is natural to define an

expansion tensor Θµν = ∇(µuν), and the vorticity tensor ωµν = ∇[µuν], where ∇ operates

on the projected 3-D space. The trace of the expansion tensor is a scalar measure of the

volume expansion, given by Θ = ∇µu
ν , and the shear tensor is the projected symmetric

free-trace part of Θµν such that Θµν = σµν + 1
3
Θhµν . Accordingly, the energy-momentum

tensor associated to the fluid can be separated into components parallel and orthogonal to

the four velocity as:

Tµν = ρuµuν + qµuν + qνuµ + Phµν + πµν , (2.52)

where ρ = Tαβu
αuβ s the energy density that includes rest masses and possibly the internal

energy, such as the chemical energy; P = 1
3
hαβTαβ is the pressure; qµ = −hα

µTανu
ν is

the momentum density or energy flux due to either diffusion or heat conduction;and

πµν = [hα
(µh

β
ν) − 1

3
hµνh

αβ]Tαβ is thetrace-free anisotropic stress tensor due to viscosity. A

perfect fluid is an non-viscous fluid with no heat conduction, that is, qν = 0 and πµν = 0.

It is analogous to an ideal gas in standard thermodynamics.

keeping this in mind and having fixed the metric to be the FLRW one, we have

some strong constraints:

• First of all: G0i = 0 implies that T0i = 0, i.e. there cannot be a flux of energy in any

direction because it would violate isotropy;

• Second, since Gij ∝ gij, then Tij ∝ gij.

• Finally, since Gµν depends only on t, then it must be so also for Tµν .
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In terms of the full metric, it is a standard practice to represent the the stress-energy

tensor as:

Tµν =
(

ρ+
P

c2

)

uµuν + Pgµν (2.53)

where uµ is the four-velocity of the fluid element, and taking into account the above

constraints we arrive at:

T00 = ρ(t)c2 = ε(t) , T0i = 0 , Tij = gijP (t) , (2.54)

where ρ(t) is the rest mass density, ε(t) is the energy density and P (t) is the pressure.

Matter described by 2.53 is known as perfect fluid, that correctly describes fluids in the

background geometry of the Universe. For more detail about the latter see [163] whereas

for more detail about viscosity, heat fluxes and the imperfect fluids see e.g. [194] and [114].

Combine Eqs. 2.50, 2.51 and 2.54, the Friedmann equation becomes:

H2 =
8πG

3
ρ+

Λc2

3
− Kc2

a2
(2.55)

while the acceleration equation is the following:

ä

a
= −4πG

3

(

ρ+
3P

c2

)

+
Λc2

3
(2.56)

In the Friedmann and acceleration equations, ρ and P are the total density and pressure.

Hence, they can be written as sums of the contributions of the individual components:

ρ ≡
∑

i

ρi , P ≡
∑

i

Pi . (2.57)

The contribution from the cosmological constant can be considered either geometrically or

as a matter component with the following density and pressure:

ρΛ ≡ Λc2

8πG
, PΛ ≡ −ρΛc

2 . (2.58)

The scale factor a is, by definition, positive, but its derivative can be negative. This would

represent a contracting universe. Note that the left hand side of the Friedmann equation

(2.55) is non-negative. Therefore, ȧ can vanish only if K > 0, i.e. for a spatially closed

universe. This implies that, if K 6 0 and if there exists an instant for which ȧ > 0, then

the universe will expand forever.
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2.2.1 Critical density and density parameters

Let us now rewrite Eq. (2.55) without incorporating Λ in the total density ρ:

H2 =
8πGρ

3
− Kc2

a2
. (2.59)

The value of the total ρ such that K = 0 is called critical energy density and has the

following form:

ρcr ≡ 3H2

8πG
= 1.88 h2 10−29 g/cm3 (2.60)

= 1.053 h2 10−5 GeV/c2 cm3 (2.61)

= 2.77 h−1 1011 M⊙/(h
−1 Mpc)3 (2.62)

= 11.26 h2 protons/m3 , (2.63)

where Eq. (2.60) represents its current value [13] and M⊙ = 1.989 × 1033g is the solar

mass unit. The critical density ρcr corresponds to approximately 6 protons per cubic

meter, certainly a very dilute fluid. It turns out that ρcr(t0) is very close to ρcr, so that

our universe is spatially flat. Such an extreme fine-tuning in K is a really surprising

coincidence, known as the flatness problem. A possible solution is provided by the

inflationary theory. Instead of densities, it is very common and useful to employ the

density parameter Ω, which is defined as

Ω ≡ ρ

ρcr

=
8πGρ

3H2
(2.64)

i.e. the energy density normalised to the critical one. We can then rewrite Friedmann

equation (2.55) as follows:

1 = Ω − Kc2

H2a2
. (2.65)

Defining

ΩK ≡ − Kc2

H2a2
, (2.66)

i.e. associating the energy density

ρK ≡ − 3Kc2

8πGa2
, (2.67)
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to the spatial curvature, we can recast Eq. 2.65 in the following simple form:

1 = Ω + ΩK . (2.68)

Therefore, the sum of all the density parameters, the curvature one included, is always

equal to unity. In particular, if it turns out that Ω ≃ 1, this implies that ΩK ≃ 0, i.e. the

universe is spatially flat. From the latest Planck data [13] we know that:

ΩK0 = 0.0008+0.0040
−0.0039 (2.69)

at the 95 per cent CL. It is more widespread in the literature the normalisation of ρ to

the present-time critical density, i.e.

Ω ≡ ρ

ρcr,0

=
8πGρ

3H2
0

(2.70)

because it leaves more evident the dependence on a of each material component. With

this definition of Ω, Friedmann equation (2.55) is written as:

H2

H2
0

=
∑

x

Ωx0fx(a) +
ΩK0

a2
, (2.71)

where fx(a) is a function which gives the a-dependence of the material component x and

fx(a0 = 1) = 1. Consistently:

∑

x

Ωx0 = 1 (2.72)

also known as closure relation, taking into account that the equation (2.67) can be

normalized and added like the rest of the species. We shall use the definition Ωx ≡ ρx/ρcr,0

through this writing.

2.2.2 The energy conservation equation

The energy conservation equation can be written as

∇νT
µν = 0 (2.73)
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is encapsulated in GR through the Bianchi identities. Therefore, it is not independent

from the Friedmann equations 2.55 and 2.56. For the FLRW metric and a perfect fluid, it

has a particularly simple form:

ρ̇+ 3H
(

ρ+
P

c2

)

= 0 (2.74)

This is the µ = 0 component of ∇νT
µν = 0 and it is also known from fluid dynamics as

continuity equation.. This equation is actually not independent of the Friedmann and

acceleration equations, but is required for consistency. It implies that the expansion of

the universe (as specified by H(z)) can lead to local changes in the energy density. Note

that there is no notion of conservation of “total energy,” as energy can be interchanged

between matter and the spacetime geometry. The continuity equation can be analytically

solved if we assume an equation of state of the form P = wρc2, with w constant. The

general solution is:

ρ = ρ0a
−3(1+w) (w = constant) , (2.75)

where ρ0 ≡ ρ(a0 = 1). There are three particular values of w which play a major role in

cosmology:

• Cold matter: w = 0, i.e. P = 0, for which ρ = ρ0a
−3. The adjective cold refers to

the fact that particles making up this kind of matter have a kinetic energy much

smaller than the mass energy, i.e. they are non-relativistic. If they are thermally

produced, i.e. if they were in thermal equilibrium with the primordial plasma, they

have a mass much larger than the temperature of the thermal bath. We shall see

this characteristic in more detail in Chapter 4. Cold matter is also called dust and

it encompasses all the non-relativistic known elementary particles, which are overall

dubbed baryons in the jargon of cosmology. If they exist, unknown non-relativistic

particles are called cold dark matter (CDM).

• Hot matter: w = 1/3, i.e. P = ρ/3, for which ρ = ρ0a
−4. The adjective hot refers

to the fact that particles making up this kind of matter are relativistic. For this

reason they are known, in the jargon of cosmology, as radiation and they encompass

not only the relativistic known elementary particles, but possibly the unknown ones

(i.e. hot dark matter). The primordial neutrino background belonged to this class,

but since neutrino seems to have a mass of approximately 0.1 eV, it is now cold. We

shall see why in Chapter 4.

• Vacuum energy: w = −1, i.e. P = −ρ and ρ is a constant. It behaves as the

cosmological constant and provides the best (and the simplest) description that we

have for dark energy, though plagued by the serious issues.
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Similarly, it is sometimes useful to think of any nonzero spatial curvature as yet another

component of the cosmological energy budget, obeying w = −1/3, so that P = ρ/3. It is

not an energy density, of course; ρ = ρ0a
−2 is simply a convenient way to keep track of

how much energy density is lacking, in comparison to a flat universe. The cosmic budget

and evolution of energy density can be seen in the Fig. (4).

2.3. The standard model of cosmology

The most successful cosmological model is called ΛCDM and is made up of Λ,

CDM, baryons and radiation (photons and massless neutrinos). The Friedmann equation

for the ΛCDM model is the following:

H(z) = H0

√

Ωr0(1 + z)4 + Ωm0(1 + z)3 + ΩK0(1 + z)2 + ΩΛ . (2.76)

We already saw in Eq. 2.69 the value of the spatial curvature contribution. From Ref. [13]

here are the other ones:

ΩΛ = 0.6911 ± 0.0062 , Ωm0 = 0.3089 ± 0.0062 (2.77)

at 68 per cent CL, where Ωm0 = Ωc0 + Ωb0, i.e. it includes the contributions from both

CDM and baryons, since they have the same dynamics (i.e. they are both cold). It is

however possible to disentangle them and one observes:

Ωb0h
2 = 0.02230 ± 0.00014 , Ωc0h

2 = 0.1188 ± 0.0010 (2.78)

also at 68 per cent CL. The radiation content, i.e. photons plus neutrinos, can be easily

calculated from the temperature of the CMB, as we shall see in Chapter 4. It turns out

that:

Ωγ0h
2 ≈ 2.47 × 10−5 , Ων0h

2 ≈ 1.68 × 10−5 (2.79)

Since h = 0.68, and recalling the closure relation of Eq. (2.72), we can conclude that today

69% of our universe is made of cosmological constant, 26% of CDM and 5% of baryons

Fig. (2). Radiation and spatial curvature are negligible.

Later, we shall see that cosmological observables very often carry the imprint of particular

length scales, in relation to specific physical effects responsible for shaping the observables

themselves. For this reason, it is convenient to briefly recall basic concepts pertaining to

distances in cosmology.
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Figure 2 – Matter/energy composition of the Universe as it is currently conceived by the
standard model of cosmology ΛCDM. Credits: https://svs.gsfc.nasa.gov/12307

2.3.1 Distances in cosmology

We present and discuss in this section the various notions of distance that are employed in

cosmology. See e.g. [78] for a reference on the subject.

2.3.1.1 Comoving distance and proper distance

We have already encountered comoving coordinates in the FLRW metric 2.29 and the

proper radius D(t) ≡ a(t)r in the FLRW metric 2.33. We must be clearer about the

difference between the radial coordinate and the distance. They are equal only when

dΩ = 0. The comoving square infinitesimal distance is indeed, from FLRW metric 2.29

the following:

dχ2 =
dr2

1 −Kr2
+ r2dΩ2 , (2.80)

i.e. it has indeed a radial part, but also has a transversal part. So, if χ is the comoving

distance between two points, the proper distance at a certain time t is d(χ, t) = a(t)χ.

The comoving distance is a notion of distance which does not include the expansion of
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the universe and thus does not depend on time. The proper distance is the distance that

would be measured instantaneously by rulers. For example, imagine to extend a ruler

between GN-z11 (the farthest known galaxy, z = 11.09) and us. Our reading at the time

t would be the proper distance at that time. Suppose that dΩ = 0. Then the comoving

distance to an object with radial coordinate r is the following:

χ =
∫ r

0

dr′

1 −Kr′2
=























arcsin r , for K = 1 ,

r , for K = 0 ,

arcsinh r , for K = −1 .

(2.81)

Deriving d with respect to the time one gets:

ḋ = ȧχ =
ȧ

a
d = Hd , (2.82)

which recovers the Hubble’s law for t = t0. Fig. (3)

2.3.1.2 Distances and horizons

For a photon, not unexpectedly,

dχ =
cdt

a(t)
= cdη , (2.83)

i.e. the comoving distance is equal to the conformal time, which we introduced in Eq. (2.30).

We might say that the comoving distance is a lookback conformal time. By integrating

cdt/a(t) from tem to t0 we get the comoving distance from the source to us, or the conformal

time spent by the photon travelling from the source to us:

χ =
∫ t0

tem

cdt′

a(t′)
=
∫ 1

a

cda′

H(a′)a′2
. (2.84)

For the dust-dominated case one has H = H0/a
3/2 and the comoving distance as a function

of the scale factor and of the redshift is:

χ(a) =
c

H0

∫ 1

a

da′
√
a′ =

2c

H0

(

1 − √
a
)

, χ(z) =
2c

H0

(

1 − 1√
1 + z

)

. (2.85)

When z → 0, χ ∼ cz/H0. At the first order in the redshift, the lookback time distance is

equivalent to the comoving one. When the lower integration limit in Eq. 2.84 is a = 0, i.e.

the Big Bang, one defines the comoving horizon χp (also known as particle horizon

or cosmological horizon). This is the conformal time spent from the Big Bang until the
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Figure 3 – Curvature of the Universe. The local geometry of the universe is determined
by whether the density parameter Ω is greater than, less than, or equal to 1. From top
to bottom: a spherical universe with Ω > 1, a hyperbolic universe with Ω < 1, and a
flat universe with Ω = 1. Credits: https://wmap.gsfc.nasa.gov/universe/uni_shape.

html

cosmic time t or scale factor a. It is also the maximum comoving distance travelled by a

photon (hence the name particle horizon) since the Big Bang and so it is the comoving

size of the visible universe. In the dust-dominated case, using Eq. 2.85, with a = 0 or

z = ∞ one obtains:

χp = cη0 =
2c

H0

. (2.86)

Note that this is not the age of the universe, but three times its value. When the upper

integration limit of Eq. 2.84 is infinite, one defines the event horizon:

χe(t) ≡ c
∫ ∞

t

dt′

a(t′)
= c

∫ ∞

a

da′

H(a′)a′2
, (2.87)

which of course makes sense only if the universe does not collapse. This represents the

maximum distance travelled by a photon from a time t. If it diverges, then no event
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horizon exists and therefore eventually all the events in the universe will be causally

connected. This happens, for example, in the dust-dominated case:

χe =
c

H0

∫ ∞

a

da′
√
a′ = ∞ . (2.88)

But, in the de Sitter universe we have

χe =
c

H0

∫ ∞

a

da′

a′2
=

c

H0a
. (2.89)

The proper event horizon for the de Sitter universe is a constant:

aχe =
c

H0

. (2.90)

2.3.1.3 The luminosity distance

The luminosity distance is a very important notion of distance for observation. It is

based on the knowledge of the intrinsic luminosity L of a source, which is therefore

called standard candle. Type Ia supernovae are standard candles, for example. Then,

measuring the flux F of that source and dividing L by F , one obtains the square luminosity

distance:

d2
L ∝ L

F
. (2.91)

Now, imagine a source at a certain redshift z with intrinsic luminosity L = dE/dt. The

observed flux is given by the following formula:

F =
dE0

dt0A0

, (2.92)

where A0 is the area of the surface on which the radiation is spread:

A0 = 4πa2
0χ

2 , (2.93)

i.e. over a sphere with the proper distance as the radius. We must use the proper distance,

because this is the instantaneous distance between source and observer at the time of

detection. Note that χ is the comoving distance between the source and us. We do not

observe the same photon energy as the one emitted, because photons suffer from the

cosmological redshift, thus:

dE

dE0

=
a0

a
. (2.94)
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Finally, the time interval used at the source is also different from the one used at the

observer location:

dt

dt0
=

a

a0

. (2.95)

We can easily show this by using FLRW metric with ds2 = 0, i.e. cdt = a(t)dχ. Consider

the same dχ at the source and at the observer’s location. Thus, cdt = a(t)dχ and

cdt0 = a(t0)dχ and the above result follows. Putting all the contributions together, we get

F =
dE0

dt0A0

=
a2dE

a2
0dt4πa

2
0χ

2
=

dE

dt4πa2
0χ

2(1 + z)2
. (2.96)

Hence, the luminosity distance is defined as:

dL ≡ a0(1 + z)χ (2.97)

From this formula and the observed redshifts of type Ia supernovae we can determine if

the universe is in an accelerated expansion, in a model-independent way.

2.3.1.4 Angular diameter distance

The angular diameter distance is based on the knowledge of proper sizes. Objects with a

known proper size are called standard rulers. Suppose a standard ruler of transversal

proper size ds (small) to be at a redshift z and comoving distance χ. Moreover, this object

has an angular dimension dφ, also small. At a fixed time t, we can write the FLRW metric

as:

ds2 = a(t)2dχ2 . (2.98)

Since the object is small and we are at the origin of the reference frame, the comoving

distance χ is also the radial distance. Therefore, the transversal distance is:

ds = a(t)χdφ . (2.99)

Dividing the proper dimension of the object by its angular size provides us with the angular

diameter distance:

dA = a(t)χ . (2.100)



33

For the case of a dust-dominated universe, one has:

dA =
2c

H0

[

1

1 + z
− 1

(1 + z)3/2

]

. (2.101)

In the limit of small z, we find dA ∼ cz/H0. All the distances that we defined insofar

coincide at the first order expansion in z. Note the relation:

dL = (1 + z)2dA , (2.102)

known as Etherington’s distance duality [63]. In gravitational lensing applications it

is often necessary to know the angular-diameter distance between two sources at different

redshifts (i.e. the angular-diameter distance between the lens and the background source).

2.3.2 History of the expansion and cosmography

The kinematics of the universe can be described through the Hubble parameter

H(t) and its dependence on time, i.e., the deceleration parameter q(t). The information

about the dynamics of the expansion can be obtained through these two parameters, which

directly depends on the cosmological model.

2.3.2.1 The Hubble parameter and H0 tension

Next we are going to deal with what is perhaps the most important cosmological

parameter, namely the so-called Hubble parameter or rate of expansion today, H0 = ȧ/a(t0).

We can write the Hubble parameter in units of 100 km s−1 Mpc−1 , which can be used to

estimate the order of magnitude for the present size (Hubble’s horizon) and age of the

universe

H0 = 100h km s−1 Mpc−1 , (2.103)

cH−1
0 = 3000h−1 Gyr , (2.104)

H−1
0 = 9.773h−1 Mpc , (2.105)

The parameter h has been measured to date h = 0.7 within 4%. When the Hubble

parameter H is evaluated at the present time t0, it becomes a number, whose value is

H0 = 67.74 ± 0.46 km s−1 Mpc−1 , (2.106)
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Figure 4 – Evolution of energy density and density parameters of the different species
that constitute the cosmic budget. Upper panel: evolution of the energy densities ρi,
in GeV 4, of photons (red solid curve), baryons (blue dashed curve), dark matter (green
dashed curve), the cosmological constant (black solid curve), and massive neutrinos (with
Mν = 0.06eV , purple dashed curve) as a function of scale factor a. The three vertical lines
denote the redshift of matter-radiation equality (black dot-dashed line), the redshift of
non-relativistic transition of massive neutrinos (red dot-dashed line), and the redshift of
matter-Λ equality (blue dot-dashed line). Lower panel: evolution of the density parameters
Ωi for the various species, with the same color coding as the upper panel. In addition, the
red, blue, and green shaded regions denote the eras of radiation, matter, and Λ domination

(Figure obtained from [181]).
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at the 68 per cent confidence level (CL), as reported by the Planck collaboration [13].

We will return to this topic later, regarding the tension between high and low redshift

measurements.

66 68 70 72 74 76 78 80
H0 [km s 1 Mpc 1]

67.4+0.5
0.5
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67.4+1.2
1.2

DES+BAO+BBN
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69.8+1.9
1.9
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5.7

4.1

4.6
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Figure 5 – Constraint on H0 from different cosmological probes at 68% CL (Figure obtained
from [416].

Another important issue has to do with the observational measurements of the

Hubble parameter. The current cosmological test have provided a an impressive con-

firmation of the standard ΛCDM cosmological model, that has been constrained with
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unprecedented accuracy. However, with the increase of the observational sensitivity a few

statistically significant tensions between different independent cosmological datasets have

emerged in recent years. Two important tensions to take into account are those of the

measures of Hubble constant (H0) and the amplitude or rateof the growth of structure (σ8),

the first that we will deal with in this chapter and the second in the chapter ??. The 2018

legacy release from the Planck satellite [1] of the Cosmic Microwave Background (CMB)

anisotropies,together with the latest Atacama Cosmology Telescope (ACT-DR4) [16] and

South Pole Telescope (SPT-3G) [17] measurements, have provided a fantastic confirmation

of the standard Λ Cold Dark Matter (ΛCDM) cosmological model. However, the improve-

ment of the methods and the reduction of the uncertainties on the estimated cosmological

parameters have seen the emergence of statistically significant tensions in the measurement

of various quantities between the CMB data and model independent cosmological probes.

The most statistically significant tension is in the estimation of the Hubble constant

H0 between the CMB, assuming a ΛCDM model, and the direct local distance ladder

measurements. In particular, the Planck collaboration finds H0 = 67.27 ± 0.60km/s/Mpc.

This constraint is in tension at about 4.4σ with the 2019 SH0ES collaboration (R19)

constraint, H0 = 74.03 ± 1.42km/s/Mpc, based on the analysis of the Hubble Space

Telescope observations using 70 long-period Cepheids in the Large Magellanic Cloud.

As shown in Fig. 5, preferring smaller values, we have the early universe estimates

of H0, as obtained by Planck or by ACT+WMAP5 (H0 = 67.6 ± 1.1km/s/Mpc), and

their combination with Baryon Acoustic Oscillation (BAO) data, the Y1 measurements of

the Dark Energy Survey, supernovae from the Pantheon catalog, and a prior on the baryon

density derived from measurements of primordial deuterium assuming standard Big Bang

Nucleosynthesis (BBN). A reanalysis of the BOSS full shape data, as well as BAO+BBN

from BOSS and eBOSS provides H0 = 67.35 ± 0.97km/s/Mpc, while SPTpol finds

H0 = 71.3 ± 2.1km/s/Mpc. In contrast, standard distance ladder and time delay distances

agree on a low-z high-H0 value, as the SH0ES estimate18 H0 = (73.5 ± 1.4)km/s/Mpc,

and the H0LiCOW inferred value H0 = 73.3+1.7
−1.8km/s/Mpc, based on strong gravitational

lensing effects on quasar systems. However, the strong lensing TDCOSMO+SLACS

sample prefers H0 = 67.4+4.1
−3.2km/s/Mpc. Then, we have the reanalysis of the Cepheid

data by using Bayesian hyper-parameters, the local determination of H0 considering the

cosmographic expansion of the luminosity distance, the independent determination of

H0 based on the Tip of the Red Giant Branch, and that obtained by using the Surface

Brightness Fluctuations method, or the Cosmic Chronometers. Finally, a larger value for

H0 is preferred by MIRAS (variable red giant stars), by STRIDES, using the Infrared or

Baryonic Tully–Fisher relation, or by Standardized Type II supernovae. There is no single

type of systematic measurement error in Cepheids which could solve the H0 crisis, as

speculated in ? (e.g., it would not work for Cepheids calibrated in NGC 4258), and in any
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case it could not explain the final result from the Maser Cosmology Project, completely

independent from these considerations, that finds H0 = 73.9 ± 3.0km/s/Mpc. If the

late universe estimates are averaged in different combinations, these H0 values disagree

between 4.5σ and 6.3σ with those from Planck.

On the other hand, prospects for measuring H0 with astrophysical neutrinos from

supernovae are already present in the literature [334]. A core-collapse supernova (CCSNe)

emits almost all its binding energy in the form of neutrinos. Observations of these neutrinos

can provide crucial information on both the dynamics of CCSNe and the properties of

neutrinos, including the neutrino lifetimes, magnetic moments, and the number of neutrino

species. To date, we have only observed neutrinos from one CCSN: SN1987A [335], in

the Large Magellanic Cloud. In spite of the limited statistics, these provided priceless

information and solidified the current understanding of the dynamics of CCSNe. Galactic

CCSNe, however, are very rare; their rate is, on average, around one to three per century.

There is, however, an additional, strongly related but continuous source of astrophysical

neutrinos: the diffuse supernova background (DSNB). The DSNB consists of neutrinos

and antineutrinos emitted cumulatively from all past CCSNe in the observable Universe.

The DSNB, composed of neutrinos coming from all possible CCSNe at redshifts z<5, is

sensitive to the low redshift expansion of the Universe. Therefore, measurements of the

DSNB serve as unique tools to constrain the underlying six- parameter ΛCDM cosmology

using neutrinos. More statistics allow one to consider more ambitious measurements.

HK and Theia, after a decade of running, can provide a “neutrino-measurement” of the

expansion rate of the universe.

2.3.2.2 The cosmic time

The unit of measure of the Hubble constant is an inverse time:

H0 = 3.24 h× 10−18 s−1 , (2.107)

whose inverse gives the order of magnitude of the age of the universe:

1

H0

= 3.09 h−1 × 1017 s = 9.78 h−1 Gyr , (2.108)

and multiplied by c gives the order of magnitude of the size of the visible universe, i.e.

the Hubble radius that we have already seen in Eq. (2.104) but evaluated at the present

time t = t0:

c

H0

= 9.27 h−1 × 1025 m = 3.00 h−1 Gpc . (2.109)
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But what does “present time” t0 mean? Time flows, therefore t0 cannot be a constant!

That is true, but if we compare a time span of 100 years (the span of some human lives)

to the age of the universe (about 14 billion years), we see that the ratio is about 10−8.

Since this is pretty small, we can consider t0 to be a constant, also referred to as the age

of the universe.6 We can calculate it as follows:

t0 =
∫ t0

0
dt =

∫ 1

0

da

ȧ
=
∫ 1

0

da

H(a)a
=
∫ ∞

0

dz

H(z)(1 + z)
. (2.110)

The integration limits of Eq. (2.110) deserve some explanation. We assumed that a(t =

0) = 0, i.e. the Big Bang. This condition is not always true, since there are models of the

universe, e.g. the de Sitter universe, for which a vanishes only when t → −∞. The other

assumption is that a(t0) = 1. This is a pure normalisation, done for convenience, which

is allowed by the fact that the dynamics is invariant if we multiply the scale factor by a

constant. Recall that, in cosmology, when a quantity has subscript 0, it usually means

that it is evaluated at t = t0.

Let us now calculate the age of the universe for the ΛCDM model. Using Eq. 2.110,

we get:

t0 =
1

H0

∫ 1

0
da

a√
ΩΛa4 + Ωm0a+ Ωr0 + ΩK0a2

. (2.111)

Using the numbers shown insofar, we get upon numerical integration:

t0 =
0.95

H0

= 13.73 Gyr (2.112)

The value reported by [13] is 13.799 ± 0.021 at 68% confidence level. Note how

H0t0 ≈ 1. This fact has been dubbed synchronicity problem by [19]. As one can see,

in presence of Λ the dimensionless age of the universe reaches values larger than unity.

This, mathematically, is due to the a4 factor multiplying ΩΛ in Eq. (2.111). Note that we

can obtain the observed value H0t0 ≈ 0.95 also in absence of a cosmological constant and

for a curvature-dominated universe, i.e. ΩK0 ≈ 0.97.

6 Pretty much the same happens with the redshift. A certain source has redshift z which,
actually, is not a constant but varies slowly. This is called redshift drift and it was first
considered by Sandage and McVittie in [159] and [124]. Applications of the redshift drift
phenomenon to gravitational lensing are proposed in [146].
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2.3.2.3 The deceleration parameter

Let us focus now on Eq. 2.56. It contains ä, so it describes how the expansion of

the universe is accelerating or . The key-point is that if the right hand side of Eq. 2.56 is

positive, i.e. ρ + 3P/c2 < 0, then ä > 0. There exists a parameter, named deceleration

parameter, with which to measure the entity of the acceleration. It is defined as follows:

q ≡ − äa

ȧ2
(2.113)

In [153] and [144] analysis based on type Ia supernovae observation have shown that

q0 < 0, i.e. the deceleration parameter is negative and therefore the universe is in a state

of accelerated expansion.
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Chapter 3

Neutrinos in the standard model of particle physics

“Dear Radioactive Ladies and Gentlemen.” – Pauli’s letter of the 4th of December

1930 (in his letter, Pauli refers to his new proposed particle, the "neutron". Apparently,

Fermi clarified that he was talking about a different particle which he referred to as

neutrino ("little neutral one").)

Physics at very small scales deals with the study of the elementary constituents

of matter as produced in particle accelerators or within astrophysical and cosmological

environments. In broad terms, particle physics seeks to determine the properties of the

Universe at large scales, starting from the attophysics1, describing the interactions among

quarks and leptons, the basic building blocks of matter. The underlying theory is the

so-called standard model (SM) of particle physics, which puts together quantum mechanics

and Einstein’s relativity along with the principle of gauge invariance. These basic pillars

constitute the three revolutions in physics that took place in the past century. The SM of

particles physics describes the electromagnetic, weak and strong interactions among the

elementary constituents of matter in terms of a quantum field theory merging quantum

mechanics with special relativity and incorporating interactions via gauge symmetry. In

this picture, all basic forces other than gravity are mediated by the exchange of intermediate

vector bosons associated with the SM gauge symmetry group SU(3)c ⊗ SU(2)L ⊗ U(1)Y ,

that is, the photon, the gluons and the weak gauge bosons W± and Z. Its theoretical

formulation was developed between the middle and the end of the twentieth century, and

1 By atto we mean length scales of the order of 10−18m, where the electroweak force operates,
which is set by the rest mass of the weak vector bosons which is roughly 100 GeV. This length
scale would be the distance where a Yukawa force is mediated by the weak vector bosons.
The magnitude of weak length scale was initially inferred by the Fermi constant measured by
neutron and muon decay.
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its current form has gained general acceptance after the experimental confirmation of

the existence of quarks towards the middle of the 70s. Quarks carry colour and hence

couple to gluons, while leptons do not. Today we know for certain that there are three

types or ‘generations’ of elementary constituents of matter. The current formulation

is based on a particular type of quantum field theory known as gauge theories. Such

theories are described by a Lagrangian invariant under local transformations generated

by the elements of symmetry groups (or product of symmetry groups). To ensure gauge

invariance is necessary to include vector fields known as gauge fields into the Lagrangian

(more precisely, derivatives are converted to covariant derivatives involving these gauge

fields). Each symmetry group of the Lagrangian can then be interpreted as describing a

force between particles, whose force carriers are the gauge fields.

The gauge bosons associated with the electroweak SU(2)L ⊗ U(1)Y part of the

symmetry are the photon and W±, Z gauge bosons. The latter was directly produced

for the first time at CERN (the European Organization for Nuclear Research)2 in 1983.

On the other hand, the gluons are associated with the SU(3) colour symmetry and

were discovered at DESY (German Electron Synchrotron)3. For the gauge bosons and

fermions to gain mass, the gauge symmetry must be spontaneously broken to the subgroup

SU(3)c ⊗ U(1)q, where SU(3)c describes the strong colour force, which holds the quarks

together in the nucleus. In contrast, U(1)Q represents the long-range electromagnetic force

between charged particles. The formulation of the spontaneous gauge symmetry-breaking

mechanism was first proposed by Englert, Brout, Higgs, Guralnik, Hagen, and Kibble,

which we will refer to as the Higgs mechanism. This mechanism predicts the existence of a

physical elementary scalar particle, the so-called Higgs boson. Its recent discovery by the

ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN constituted

an outstanding achievement in particle physics and a triumph for elementary particle

theory, and it was awarded the 2013 physics Nobel Prize. While the mass ∼ 125 GeV

and current data on decay branching ratios seem, in general, to be in accordance with

expectations, a better understanding of its properties from further data will be required

to underpin the nature of the associated dynamics and possibly uncover new principles in

nature.

The group SU(3)c ⊗ SU(2)L ⊗ U(1)Y is not believed to be the ultimate theory

of elementary particle interactions. However, it is accepted as a good approximation at

energy scales below a few hundred gigaelectronvolts (GeV). For example, supersymmetry or

strong dynamics has been suggested to explain the naturalness of the electroweak breaking

mechanism. While we wait for positive signs of new physics, such as supersymmetry, in

the next run of the LHC, we turn to the neutrino sector, which provides one of the most

solid present-day pieces of evidence for physics beyond the SM.

2 https://home.cern/
3 https://www.desy.de/index_eng.html
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3.0.1 Brief history of neutrinos

Among the elementary building blocks of matter, neutrinos are unique in that

they do not carry an electric charge and, as a result, interact only weakly; hence their

experimental elusiveness. Neutrinos may pass through ordinary matter almost unaffected.

As a result, they constitute a unique probe of the very early Universe, and the precise

determination of their properties may hold the clue for what lies beyond the SM of

particle physics. Neutrinos come from ‘natural’ sources such as nuclear fusion inside the

Sun, cosmic ray interactions in the Earth’s atmosphere, the Earth’s natural radioactivity,

supernova explosions, not to mention neutrinos produced primordially in the Big Bang

itself (see Figure 6). The latter is the subject of this thesis.

Figure 6 – Fluxes of different terrestrial, astrophysical and cosmic sources

There is one neutrino ‘flavour’ within each SM generation. The first neutrino νe

was discovered in nuclear reactors in 1956 [322], while the νµ [323] and the ντ [324] were

discovered in particle accelerators in 1961 and 2000, respectively. Three neutrino species

also fit well with the good measurement of the Z-boson ‘invisible’ width at LEP and the

primordial abundance of helium in the early Universe [325]. The Sun and most visible stars

produce their energy by converting hydrogen to helium and are copious sources of neutrinos.

Pontecorvo was the first to speculate that such neutrinos might be detectable through
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radiochemical means in a large volume of chlorine-bearing liquid [326]. In 1964, Bahcall and

Davis argued that a solar neutrino experiment would be feasible in a large enough detector

volume placed deep underground to reduce cosmic-ray-associated backgrounds [327]. In

the late 1960s, Ray Davis proposed his pioneer geochemical experiment at Homestake [328],

which captured fewer neutrinos than expected in the standard solar model. Understanding

the observed solar neutrino deficit remained a challenge until its final resolution over ten

years ago, which gave us irrefutable proof for the existence of neutrino mass, a possibility

always present ever since Pauli proposed the neutrino idea in order to account for energy

conservation in nuclear beta decays. However, the success of the V–A hypothesis [329] in

accounting for the observed parity violation in the weak interaction [330] was taken as an

indication for massless neutrinos and incorporated into the manifestly chiral formulation

of the SU(3)c ⊗ SU(2)L ⊗ U(1)Y theory.

The 1980s saw a prosperous period in neutrino physics. On the theory side,

motivated by the idea of grand unification, one started to question the assumption of

lepton (and baryon) number conservation. The unification idea inspired the seesaw

mechanism as a way to understand the tiny neutrino masses as resulting from the exchange

of superheavy ‘messengers,’ either fermions (type I seesaw) or triplet scalars (type II

seesaw). The multi-generation description of the gauge group seesaw mechanism was

formulated to describe the phenomenology of neutrino oscillations, leading to the current

form of the lepton mixing matrix, presented in terms of θ12, θ23 and θ13 of the mixing

angles θij as well as Dirac and Majorana CP phases affecting oscillations and lepton

number violation processes, respectively. The last ingredient required to describe neutrino

propagation was the accurate description of matter effects present in the interior of the

Sun and the Earth, formulated by Mikheev, Smirnov, and Wolfenstein.

On the other hand, from the experimental point of view, start using water Cherenkov

detectors, which lays the groundwork for the historic detection of neutrinos from SN1987a

in the Large Magellanic Cloud. Through the measures of the zenith angle dependence

and recoil energy spectrum of solar neutrinos, the observational bases are established of

the long-standing problem of solar neutrinos indicated by geochemical experiments since

Homestake. Besides, the observations of neutral current neutrino interactions on deuterium

at the Sudbury Neutrino Observatory (SNO)4 offer strong evidence for solar νe flavour

conversions, also contributing to the determination of the oscillation parameters. The last

piece of the solar neutrino puzzle had to wait to confirm the oscillation hypothesis by the

nuclear reactor experiment KamLAND5. This experiment measured the flux of electron

anti-neutrinos (ν̄e) from distant nuclear reactors in Japan and the spectrum distortion,

matching the one expected from large mixing angle oscillations. This last was crucial to

4 https://sno.phy.queensu.ca/
5 Kamioka Liquid Scintillator Antineutrino Detector - https://www.awa.tohoku.ac.jp/

kamland/
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exclude non-standard solutions, thus establishing the robustness of large-angle oscillations

driven by θ12.

Cosmic ray interactions with atomic nuclei in the Earth’s atmosphere produce

particle showers, resulting in (anti)neutrinos. Large underground experiments such as

IMB, MACRO, and Kamiokande-II indicated a deficit in the muon- to-electron neutrino

event ratio. The elucidation of this ‘anomaly’ had to wait till the commissioning of the

Super-K experiment, which gave a very high statistics measurement over a wide energy

range from hundreds of mega-eV to a few tera-eV. It showed that the observed deficit

in the µ-like atmospheric events is due to νµ oscillations driven by θ23, a discovery later

confirmed by accelerator experiments such as K2K6 and MINOS7.

Recent reactor experiments, especially at Daya Bay, have observed the disappear-

ance of electron-anti-neutrinos at a distance of about 2 km from the reactors, providing

a robust determination of the third neutrino mixing angle θ13, also seen at accelerator

experiments such as T2K.This last opens the door to a new generation of oscillation

experiments, probing CP violation in neutrino oscillations and may shed light on flavor

mystery.

confirmation of the oscillation hypothesis by experiments based on reactors and

accelerators. Dedicated fits indicate a pattern of mixing angles quite different from

the Cabibbo–Kobayashi–Maskawa (CKM) matrix, which characterizes quark mixing.

Altogether, the discovery of neutrino oscillations constitutes a historic landmark in particle

physics, which not only implies new physics but is also likely to pave the way for a deep

understanding of the flavour puzzle. In particular, lepton flavour violation may also be

seen in the charged lepton sector, irrespective of neutrino mass, bringing complementary

information. Moreover, there is likely total lepton number violation, as highlighted in the

modern gauge theoretical formulation of neutrino masses. Proving the Majorana nature of

neutrinos requires searching for lepton number violation processes such as neutrinoless

double-beta decay.

3.0.2 Neutrinos in the SM

The SM of particles physics is a chiral gauge theory formulated in terms of separate

left- and right-handed chiral components of the fermion matter fields. The mathematical

description of the SM is based on the gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y , where the

SU(3)c part describes the strong force (specifically the theory of quantum chromodynamics

- QCD), whereas the SU(2)L ⊗ U(1)Y part describes the electro-weak (EW) interactions.

6 KEK to Kamioka (Long-baseline Neutrino Oscillation Experiment) - https://neutrino.kek.

jp/
7 Main Injector Neutrino Oscillation Search - https://news.fnal.gov/2005/03/

minos-neutrino-experiment-launched-fermilab/
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In a rather symbolic form, which has many things in the background, the SM of particles

physics Lagrangian is given by:

LSM = −1

4
FµνF

µν + iΨ̄γµDµΨ +DµΦDµΦ − V (Φ) − Y ijΨ̄iΦΨj. (3.1)

The first term includes the kinetic part for the gauge fields (through their field-strengths

Fµν), the second term contains the kinetic part for the matter fields (denoted by Ψ) and

their couplings to the gauge fields. The third term is the kinetic part for the Higgs field Φ

(and specifies its interactions with gauge bosons), whereas the fourth term is the Higgs

potential which gives rise to the Higgs mechanism and hence to EW symmetry breaking,

wherein the SU(2)L ⊗ U(1)Y symmetry is broken down to the U(1)EM subgroup 8.

The matter content of the SM is arranged into left-handed SU(2) quark doublets

[Qi
L = (ui

L, di
L), with L standing for left-handed and i = 1, 2, 3 running over the three

generations] and lepton doublets [Li
L = (ei

L, νi
L)], and right-handed singlets ui

R, di
R, and ei

R.

The last term in Eq. (3.1) is the Yukawa interaction term, which couples the left-handed

fermion doublets with the right-handed fermion singlets through the Higgs doublet. Upon

EW symmetry breaking, the Yukawa interaction term gives mass to the charged leptons

and quarks. Surprisingly, the SM matter content does not include right-handed neutrino

fields νi
R. Therefore, the Yukawa interaction term cannot generate masses for the neutrinos.

This last is no coincidence; instead, it occurs by construction. When the SM was formu-

lated, there only existed upper limits on νe of about 200 eV, much smaller than the next

lightest known fermion, the electron whose mass is about 0.5 MeV. Therefore, the SM was

constructed to accommodate massless neutrinos. However, in 1998, the SuperKamiokande9

atmospheric neutrino experiment detected neutrino oscillations, it became clear that the

picture has to be extended to allow for neutrino masses. Several approaches to give mass

to neutrinos in Beyond the Standard Model (BSM) scenarios exist. Nevertheless, the

absence of a mechanism for providing mass to the neutrinos is among the most critical

shortcomings of the SM. Conversely, the observation that neutrinos have mass is the

only direct evidence for physics beyond the Standard Model, presumably operating at

excessively high energy scales (which could explain the smallness of neutrino masses). As

such, no doubt shedding light on the neutrino mass scale would open the door towards

new physics, and the impact such a feat would have cannot be understated. Unveiling

the neutrino mass scale, mass ordering, is one of the key targets of several experimental

efforts, both in the laboratory and in cosmology.

8 With EM standing for “Electromagnetism”.
9 http://www-sk.icrr.u-tokyo.ac.jp/sk/index-e.html
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Family T T3 Q





νe

e





L





νµ

µ





L





ντ

τ





L

1/2
+1/2

−1/2

0

−1

νeR νµR ντR 0 0 0

eR µR τR 0 0 −1




u

d





L





c

s





L





t

b





L

1/2
+1/2

−1/2

+2/3

−1/3

uR cR tR 0 0 +2/3

dR sR bR 0 0 −1/3

Table 3 – The weak-isospin structure of the fermions in the SM. L and R stand for
left-handed and right-handed fermions, T and T3 are the total weak-isospin and its third
component, and Q is the electric charge. Note that the results presented in this report are

insensitive to, and independent of, any small (< MeV) neutrino masses.

Neutrinos play a special role in the electro-weak theory SU(2)L ⊗ U(1)Y . While

the left-handed neutrinos are part of the doublets SU(2)L:

Li =





νli

li





L

, li = {e, µ, τ}, (3.2)

right-handed neutrinos are SU(2) singlets. Since the electromagnetic charge and the

hypercharge U(1) differ by the value of the third weak isospin component:

Q = T3 + Y, (3.3)

where we can see that the right-handed neutrinos (νli)R do not carry quantum numbers

SU(2) ⊗ U(1) (See Tab. 3). This has two important implications:

• The neutrinos seen experimentally are those produced by weak interactions. These

are purely left-handed.

• Since we cannot infer the existence of right-handed neutrinos from weak processes,

the presence of (νli)R can only be seen indirectly, most likely through the existence

of masses for the neutrinos. However, the mass of the neutrinos does not necessarily

imply the existence of right-handed neutrinos.
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Let’s briefly summarize what we know about left-handed neutrino thanks to weak interac-

tions. In the electro-weak theory these neutrinos couple to the Z boson:

LZνν̄ =
e

2 cos θw sin θw

Zµ
[

JNC
ν

]

ν
, (3.4)

where

[

JNC
ν

]

ν
=
∑

i

(ν̄li)Lγν(νli)L. (3.5)

Precise studies of the shape of the Z line allow us to determine the number of neutrino

species i, since as this number increases, the total width of the Z also increases. Each

type of neutrino (assumed its mass mνi
≪ Mz/2 ) contributes in the same way way to the

width of Z. The decay width into neutrinos (anti-neutrinos) is given by:

Γ(Z → νli ν̄li) =

√
2GFM

3
z

24π
ρ, (3.6)

where GF is the Fermi constant determined in the muon decay and ρ = (2gl
A)2 is related

to the axial coupling of charged leptons with Z. Doing use of gl
A = −0.50102 ± 0.00030,

which is the mean of the results obtained by the four collaborations of LEP10 (Namely:

ALEPH, DELPHI, L3 and OPAL)11 and SLD12. Thus, we have that, numerically:

Γν ≡ Γ(Z → νli ν̄li) = (167.06 ± 0.22)MeV. (3.7)

With this, the number of different neutrino species, Nν , can be derived from precision

measurements of the full width of Z and its partial widths in hadrons and leptons, using

the relation:

Γtot = Γhad + 3Γlep +NνΓν , (3.8)

where Γtot = (2.4939 ± 0.0024) GeV, Γhad = (1.7423 ± 0.0023) GeV, Γlep(83.90 ± 0, 1) MeV

and from the so-called invisible width of Z, we get Γinv = NνΓν = (499.9 ± 3.4) MeV. So

in this way, we can deduce the number of species of relativistic neutrinos:

Nν = 2.992 ± 0.020, (3.9)

10 The Large Electron-Positron Collider. https://home.cern/science/accelerators/

large-electron-positron-collider
11 For an extensive review of these projects, you can visit the hompage of The LEP Electroweak

Working Group http://lepewwg.web.cern.ch/lepewwg/
12 https://www-sld.slac.stanford.edu/sldwww/sld.html
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which reinforces the idea of three generations of leptons and establishes at the same time

the existence of 3 active neutrinos, (See Fig. 7). It is possible to obtain a more precise

value of Nν using other information derivable from the Z line. The cross section for

e+e− → hadrons can be expressed in terms of three factors: a peak cross section:

σ0 =
12πΓlepΓhad

Γ2
totM2

z

(3.10)

a Breit–Wigner factor:

BW (s) =
sΓ2

tot

(s−M2
z )2 +

s2Γ2
tot

M2
z

(3.11)

and a bremsstrahlung correction of the initial state [1 − δQED(s)], with:

σhad = σ0BW (s)[1 − δQED(s)] (3.12)

The value of σ0 can be extracted from the analysis of the effective section for the process

e+e− → hadrons in LEP:

σ0 = (41.491 ± 0.058)nb. (3.13)

This can be combined with the LEP results for the ratio of hadronic to leptonic partial

widths of Z, as:

Rl =
Γhad

Γlep

= 20.765 ± 0.026, (3.14)

with which a value for the number of active neutrinos can be deduced, as:

Nν =
Γinv

Γν

=
Γlep

Γν

(

Γtot

Γlep

− Γhad

Γlep

− 3

)

=
Γlep

Γν

(
√

12πRl

σ0M2
Z

−Rl − 3

)

. (3.15)

In the SM, the quotient Γlep/Γν is known very precisely:

Γlep

Γν

= 1.991 ± 0.001. (3.16)

Using this value, together with the experimentally determined Z boson mass, MZ =

(91.1867 ± 0.0021) GeV, and the values of σ0 and Rl measured at LEP (See [331]), we

obtain:

Nν = 2.994 ± 0.011; Γinv = (500.1 ± 1.9)MeV. (3.17)
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values that are consistent with those obtained previously but a factor of two more precise.

If we use the width of the Z boson (Γz = 2.4952 ± 0.0023 GeV - See Fig. 7), we get:

Nν = 2.9840 ± 0.0082, (3.18)

which is in agreement with the three observed generations of fundamental fermions,

but with an accuracy of 0.3% (For a comprehensive review of the results of this project,

see [331]). On the other hand, the coupling of the W± bosons to the charged leptonic

currents is analogous to that of the Z and the neutrinos. Again, only left-handed neutrinos

are involved. We have:

LW lνl
=

e√
2 sin θw

[

W µ
+J

lep
µ− +W µ

−J
lep
µ+

]

, (3.19)

where

J lep
µ− = (J lep

µ+)† =
∑

i

l̄iLγννliL. (3.20)

The states of the previous equation are not in general eigenstates of mass, since the

generation of mass can mix fermions of the same charge with each other. However, we can

always diagonalize the charged lepton mass matrix by a unit transformation:

lL = U l l̃L; lR = U l l̃R. (3.21)

After this transformation, we have:

J lep
µ− = (J lep

µ+)† =
∑

ij

l̃iLγν(U l)†
ijνljL =

∑

i

l̃iLγν(U l)†
ij ν̃ljL, (3.22)

where

ν̃lL = (U l)†νlL. (3.23)

Since U l is unitary, the neutral current [JCN
µ ]ν is identical to the one expressed in terms

of νlL or ν̃lL. Normally, the ν̃ljL states are called eigenstates of the weak interaction, since

they are produced in the decays of a W+ associated with a charged lepton l̃i of defined

mass. For simplicity in the notation we will remove the tilde from l̃iL and ν̃iL from now
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on, understanding that the states now called νliL are those produced by weak interactions.

Similarly the charged leptons li are the states associated with the diagonal mass matrix:

Ml =











me

mµ

mτ











. (3.24)

We will return to this topic in the subsection 3.0.2.4.

Figure 7 – Left Panel. Measurements of the hadron production cross-section around
the Z resonance. The curves indicate the predicted cross-section for two, three and four
neutrino species with SM couplings and negligible mass. Right Panel. Average over
measurements of the hadronic cross-sections by the four experiments, as a function of
centre-of-mass energy. The full line represents the results of model-independent fits to
the measurements. Correcting for QED photonic effects yields the dashed curves, which

define the Z parameters (Obtained from [331]).

3.0.2.1 Massive neutrinos

We saw in the last section that SM predicts massless neutrinos, making them

essentially different from other fermions, such as the charged leptons and quarks, which

are known to have masses. SM has also been highly successful in explaining the various

low weak energy processes involving charged and neutral current interactions. For a long

time, therefore, there was a substantial prejudice among some theorists that neutrinos are

indeed massless. Many BSM scenarios that became extremely popular were, in fact, closely

related to the neutrino’s lack of mass. The situation has now changed drastically. There

is convincing evidence for neutrino masses for several experiments described below and in

subsequent sections. The landscape of particle physics has been altered for every discovery.
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For a good reason, the neutrinos are now on the same footing as quarks, a fact anticipated

by people who believed in quark lepton symmetry more literally than just as a token

indicated by the weak interactions; but more importantly, it is giving new and exciting

clues to the directions of new physics BSM. Our current understanding of neutrinos has

changed dramatically in the past sixteen years. Thanks to many neutrino oscillation

experiments involving solar, atmospheric, accelerator, and reactor (anti)-neutrinos, we

have learned that neutrinos produced in a well-defined flavor eigenstate can be detected,

after propagating a macroscopic distance, as a different flavor eigenstate. The simplest

interpretation of this phenomenon is that, like all charged fermions, the neutrinos have

mass and that, similar to quarks, the neutrino weak, or flavor, eigenstates are different

from neutrino mass eigenstates, i.e., neutrinos mix. This new state of affairs has also

raised many other issues which did not exist for massless neutrinos: For example:

• Massive Dirac neutrinos, like charged leptons and quarks, can have nonzero magnetic

dipole moments, and massive Dirac and Majorana neutrinos can have nonzero

transition dipole moments.

• The heavier neutrinos decay into lighter ones, like charged leptons and quarks.

• Most important, the neutrinos can be either Majorana or Dirac fermions (see next

section for more details).

Learning about all these possibilities can bring our knowledge of neutrinos to the same

level as that of charged leptons and quarks, which may also lead to a plethora of laboratory,

astrophysical and cosmological consequences. More importantly, knowing the properties

of neutrinos in detail can also play a crucial role in clarifying the model for new physical

laws beyond those embodied in the Standard Model. One may also consider the possibility

that there could be new neutrino species beyond the three known ones, for example, the

sterile neutrino.

In addition to being a question whose answer would be a revolutionary milestone

pointing to unexpected new physics, it may also become a necessity if the LSND13 results

are confirmed by the MiniBooNE14 experiment, now in progress at Fermilab. This would,

undoubtedly, be a second revolution in our thinking about neutrinos and the nature of

unification. The existence of neutrino masses qualifies as the first evidence of new physics

beyond the Standard Model. The answers to the neutrino-questions mentioned above will

add substantially to our knowledge about the precise nature of this new physics and, in

turn, about the nature of new forces beyond the Standard Model. They also have the

13 Liquid Scintillating Neutrino Detector (LSND). http://www.nu.to.infn.it/exp/all/lsnd/
14 https://microboone.fnal.gov/
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potential to unravel some of the deepest and most long-standing mysteries of cosmology

and astrophysics, such as the origin of matter, the origin of the heavy elements, and,

perhaps, even the nature of dark energy.

We carry out this survey to show how the different experimental results expected

in the coming decades can elucidate the nature of neutrinos and our search for new physics.

In particular, we would like to know:

• the implications of neutrinos for such longstanding ideas as grand unification, super-

symmetry, string theory, extra dimensions, etc.

• the implications of the possible existence of additional neutrino species for physics

and cosmology.

• and whether neutrinos have anything to do with the origin of the observed matter-

antimatter asymmetry in the universe and, if so, whether there is any way to

determine this via low-energy experiments.

Once the answers to these questions are at hand, we will have considerably narrowed

the choices of new physics, providing a giant leap in our understanding of the physical

Universe.

3.0.2.2 Why neutrino mass necessarily means physics beyond the SM?

Up to date, neutrino oscillations are the only evidence for the existence of physics

BSM of particle physics. It is imperative to decode the type of new physics indicated

by existing observational data; to predict the signals of new physics that might appear

in future projects, we need to make forecasts. We need to understand how they fit

into the different schemes delineated for various reasons, including the issue of hierarchy

problem and gauge coupling unification. In the SM, the quarks and leptons transform as:

QL(3, 2, 1/3), uR(3, 1, 4/3), dR(3, 1,−2/3), L(1, 2,−1), ER(1, 1,−2). The Higgs boson h0,

responsible for electroweak symmetry breaking, transforms as (1, 2,+1). The electroweak

symmetry SU(2)L ⊗ U(1)Y is broken by the vacuum expectation of the Higgs doublet

〈Φ〉 = v/
√

2 ≈ 246/
√

2 GeV, which makes that W± and Z gauge bosons and electrically

charged fermions acquire mass. The reason neutrinos do not get mass as a result of

the Higgs mechanism is that the right-handed neutrino νR was not included in the list of

fermions in the Standard Model; as a result, there is no coupling of the form ηνL̄HνR that

could have given mass to the neutrinos after symmetry breaking.
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The apparently simple way to understand the mass of neutrinos would be to extend

the standard model to include νR. This would also be desirable from the point of view

of making the quark lepton model symmetric. There are two problems with this naively

trivial modification:

• One is that by quark-lepton symmetry, one would expect the neutrino masses arising

from the Yukawa coupling ηνL̄HνR to be of the same order as the quark and charged

leptons. Observational limits show that the masses of neutrinos are at least 106

times smaller than the smallest masses of quarks and leptons. Therefore, a non-zero

neutrino mass suggests not only the existence of right-handed neutrinos (of which

there would be three if they correspond to the usual generations) but also new

physics that will allow us to understand why Mν ≪ mq,l. The seesaw mechanism

provides a plausible basis for this understanding since it uses the fact that, among

the known fermions, only neutrinos can have Majorana mass terms.

• The other problem with introducing a set of right-handed neutrino fields is that they

are SM gauge singlets. This means that, as far as the symmetries of the Standard

Model are concerned, a Majorana mass for the νR fields is allowed. If such a mass

term is present, however, the neutrino masses are not simply given by the ηνv but

are determined by a more complicated function of ηνv and the Majorana masses

of the right-handed neutrinos. To avoid the presence of a Majorana mass for the

right-handed neutrinos, one must impose an extra symmetry to the SM Lagrangian, a

very nontrivial modification of what is traditionally referred to as the SM electroweak

interactions.

3.0.2.3 Absolute mass of neutrinos

The study of solar and atmospheric neutrinos wrote an important chapter in particle

physics, leading to the discovery of neutrino oscillations, which are a quantum-mechanical

phenomenon, as they propagate, change the flavor, and thus confirm that they have mass.

Oscillations of neutrinos do not probe the absolute neutrino mass, nor are they currently

sensitive to the hierarchy order of the neutrino states. Currently, there are three realistic

ways to probe the absolute neutrino mass:

• Measuring the shape of the end-point of the spectrum in tritium beta decays: The

simplest way to directly measure the neutrino’s mass is using beta decays. The

neutrino mass can be determined by observing the shape of the end-point (18.6 keV)

of the single beta-decay spectrum with sufficient precision. One method used to

precisely measure the beta-decay spectrum relies on a spectrometer to precisely select

high-energy electrons from single β-decay of molecular tritium (T2 →3 HeT++e−+ν̄e)
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(See Fig. 8). The most recent experiment to use this technique is KATRIN15, which

placed a limit of mν < 0.9 eV at 90% CL (where mν is the effective electron

antineutrino mass), and combining this result with the first neutrino mass campaign

(mν < 1.1 eV at 90% CL), they find an upper limit of mν < 0.8 eV at 90% CL, which

constitutes the first direct measure of the neutrino mass with sub-eV sensitivity (0.7

ev at 90% CL) [332]. The final goal of KATRIN is to reach a sensitivity of 0.2 eV at

90% CL (see Fig. 9). The measurement principle to derive a model-independent16

neutrino mass is the high precision measurement of the kinetic energy of the beta

electron from the Tritium beta decay. In the beta decay of Tritium to Helium, an

electron and anti-neutrino are released (3H →3 He+ e− + ν̄e). They share together

the released transition energy, which is distributed to their kinetic energies, the rest

mass of the electron, and -if the neutrino is massive- also to the rest mass of the

neutrino. The subtle effect of the neutrino rest mass on the kinetic energy of the

electron is largest when the neutrino is non-relativistic, i.e., at the endpoint of the

electron energy spectrum. Therefore, a precision measurement of the electron energy

very close to its endpoint gives information on the neutrino mass. In principle, every

beta decaying isotope could be used. However, Tritium is an excellent candidate for

this experiment, due to the very low end-point energy of Tritium decay, the effect

of massive neutrinos on the electron’s kinetic energy is more significant. On top

of that, Tritium has a simple nuclear structure with one proton and two neutrons.

This means no nuclear energy dependant corrections must be applied to the beta

spectrum and calculated from the first principles of the well-proven V-A theory17.

• The search for neutrinoless double-beta decay ββ0ν: Two-neutrino double-beta decay

(2νββ) is the second-order (in the Fermi constant GF ) weak interaction process, by

which two neutrons in a nucleus are converted to protons, plus two electrons plus

two-electron anti-neutrinos, (A,Z) → (A,Z + 2) + 2e+ 2νe. This rare process has

been detected in a few nuclei, conserving the lepton number (L = Le + Lν + Lτ ).

On the other hand, neutrinoless double-beta decay 0νββ is a variety of double-beta

decay expected to occur if neutrinos are Majorana (if there are no conserved leptons

numbers)18. Its amplitude is proportional to an effective mass parameter 〈mββ〉 as a

function of the lightest neutrino mass mlightest.

15 Karlsruhe Tritium Neutrino Experiment (KATRIN) - https://www.katrin.kit.edu/
16 This method is independent of any cosmological model and of the mass nature of the neutrino,

i.e. it may be a lepton of Majorana or Dirac type.
17 "Vector minus axial", a theory of weak interaction.
18 The problem of the nature of massive neutrinos νi (Dirac or Majorana?) is one of the most

fundamental problem of neu- trino physics. In order to reveal the nature of neutrinos with
definite masses it is necessary to study processes in which the total lepton number L is
violated.



55

Figure 8 – Energy spectrum of tritium beta decay used by the KATRIN neutrino experiment.
The neutrino mass is measured by analysing the end-point of the spectrum. In this plot

three possible graphs are shown for massless, light and heavy neutrinos.

• Measurements of temperature anisotropies in the CMB: The hot, dense conditions

of the early universe included a thermal background of photons and free electrons

in the plasma. Photons streamed freely as the plasma cooled and the density of

free electrons plummeted, and the mean free path became larger than the extent

of the observable universe. Today we observe these photons as the CMB. These

same hot and dense conditions led to a cosmic neutrino background (CνB) that

contributes nearly as much as photons to the total energy density in the early

universe. The neutrinos began to stream freely at kBT ≈ 1MeV and continue to

flow freely through the cosmos to this day. Unlike with photons, direct detection

of the CνB is exceedingly difficult. Authors at [212], present the first detection of

the temporal phase shift generated by neutrino perturbations during the acoustic

oscillation phase of cosmological evolution, and find an amplitude of this effect

consistent with the standard value associated with the three known neutrino species

(see Fig. 10).
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Figure 9 – Comparison of best-fit values and uncertainties with previous neutrino mass
experiments (See [332] and the references therein).

One of the main objectives of the present thesis deals precisely with this last

point, namely, to use the data of the CMB anisotropies to obtain limits on the number

of relativistic species (3 generations of active neutrinos and something more) and the

absolute mass value of neutrinos in the very low energy regime. This summarizes our

summary of the experimental status of neutrino physics. Now we turn to theory, starting

with the origin of neutrino mass and then moving to the structure of neutrino mixing and

its theoretical basis.
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Figure 10 – Undamped power spectra Kl with different values of Nν . Figure obtained from
Follin et al. [212].

3.0.2.4 Dirac and Majorana masses

The fact that the neutrino has no electric charge endows it with specific properties

not shared by the charged fermions of the Standard Model. One can write two kinds of

Lorentz invariant mass terms for the neutrino, Dirac, and Majorana masses, whereas, for

the charged fermions, conservation of electric charge allows only Dirac-type mass terms. In

the four component notation for describing fermions, commonly used for writing the Dirac

equation for the electron, the Dirac mass has the form ν̄ν, connecting fields of opposite

chirality. In contrast, the Majorana mass is of the form νT
LC

−1νL connecting fields of the

same chirality, where νL is the four-component spinor and C−1 is the charge conjugation

matrix. In the first case, the fermion ν is different from its antiparticle, whereas in the

latter case, it is its own antiparticle. A Majorana neutrino implies a whole new class of

experimental signatures, the most prominent among them being the process of neutrinoless

double-beta decay of heavy nuclei 0νββ. Since 0νββ arises due to the presence of neutrino

Majorana masses, a measurement of its rate can provide exact information about neutrino

masses and mixing, provided:

• one can satisfactorily eliminate other contributions to this process that may arise

from other interactions in a full beyond-the-standard-model theory, as we discuss

below.

• one can precisely estimate the values of the nuclear matrix elements associated with
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the 0νββ in question.

The expressions for the Dirac and Majorana mass terms clarify that a theory

forbids Majorana masses for a fermion only if there is an additional global symmetry

under which it has a nonzero charge. As noted above, for charged fermions such as the

electron and the muon, Majorana mass-terms are forbidden because they have a nonzero

electric charge, and the theory has electromagnetic U(1) invariance, and hence, all charged

fermions are Dirac fermions. On the other hand, a Lagrangian with both Majorana and

Dirac masses describes, necessarily, a pair of Majorana fermions, irrespective of how small

the Majorana mass term is (although it may prove very difficult to address whether the

fermion is of the Dirac or the Majorana type when the Majorana mass-term is significantly

smaller than the Dirac mass term). Hence, since the neutrino has no electric charge,

the “simplest” theories predict that the neutrino is a Majorana fermion meaning that

a Majorana neutrino is more natural (or requires fewer assumptions) than a Dirac neutrino.

Let us return to the mass diagonalization problems for the leptonic sector (see

subsection 3.0.2). As we saw in the SM building, the three flavor neutrinos, νe,νµ,ντ ,

complete the spectrum of elementary particles of the SM. Every neutrino is the partner of

a charged lepton (electron, muon, tau), connected to it by the weak interaction. These

interactions all fall within the context of the general gauge theory of SU(2)L ⊗ U(1)Y .

This easily divides the types of possible neutrino interactions into three broad categories:

• Charged Current (CC): The first type of interaction is mediated by exchanging a

charged W boson. The leptonic charged weak current, jµ
W , is given by the form:

jµ
W = 2

∑

α=e,ν,τ

ν̄α,Lγ
µlα,L. (3.25)

These previously defined components enter directly into the Lagrangian:

LCC = − g

2
√

2

(

jµ
WWµ + jµ,†

W W †
µ

)

(3.26)

via their coupling to the heavy gauge boson field W±. Though the charged leptonic

fields are of a definite mass eigenstate, this is not necessarily so for the neutrino

fields, giving rise to the well-known phenomena of neutrino oscillations.

• Neutral Current (NC): The second type of interaction, known as the neutral current

(NC) exchange, is similar in character to the charged current case. The leptonic

neutral current term, jµ
Z , is given by:

jµ
Z = 2

∑

α=e,ν,τ

gν
Lν̄α,Lγ

µνα,L + gf
Ll̄α,Lγ

µlα,L + gf
R l̄α,Rγ

µlα,R, (3.27)
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which describes the exchange of the neutral boson, Z0. Here, να,L(R) and lα,L(R)

correspond to the left (rigth) neutral and charged leptonic fields, while gν
L, gf

L

and gl
R represent the fermion left and right- handed couplings. The corresponding

Lagrangian is then:

LN C = − g

2 cos θW

jµ
ZZµ, (3.28)

where Zµ represent the heavy gauge boson field, whilw θW is the Weinberg mixing

angle. Historically, the neutrino-lepton CC and NC interactions had been used to

study the nature of the weak force in great detail.

• CC + NC: We now turn our attention to the last possible type of interaction, where

the charged current and neutral current amplitudes interfere with one another. Such

a combined exchange is realized in νe + e → νe + e scattering. One remarkable

feature of neutrino-electron scattering is that it is highly directional. The outgoing

electron is emitted at small angles concerning the incoming neutrino direction. A

simple kinematic argument shows that indeed Eeθ
2
e ≤ 2me. This remarkable feature

has been exploited extensively in various neutrino experiments, particularly solar

neutrino detection. The Kamiokande neutrino experiment was the first to use this

reaction to reconstruct 8B neutrino events from the sun and point back to the

source. The Super-Kamiokande experiment later expanded the technique, creating

a photograph of the sun using neutrinos19. Other solar experiments later used the

method, such as SNO and BOREXINO.

3.0.3 Neutrino oscillations

Neutrinos do not decay, but they do change the flavor. This last is known as

neutrino oscillation, and it is due to an odd quantum property of the particles. Each of

the three neutrino flavors is a superposition mixture of three quantum states with different

masses, which we label ν1, ν2, and ν3. Think of it as like the (x,y,z) coordinates on the

surface of a sphere: the total “position” on the sphere’s surface is the neutrino flavor, but

the “coordinates” are the hidden mass states. However, it does not stick to one spot: the

state of the neutrino travels across the sphere’s surface, eventually coming back to its

starting point (hence the name “oscillation”). In less abstract terms, this means that as a

neutrino propagates, it changes from one flavor to another. The following sections will

discuss the theoretical approaches and implications of this change for experiments.

19 The fact that such a picture was taken underground during both day and night is also quite
remarkable - http://www-sk.icrr.u-tokyo.ac.jp/
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3.0.3.1 Neutrino mass and mixing matrix

Is possible to articulate all neutrino interactions within this simple framework:

L ⊃
∑

α=e,ν,τ

[

ν̄αi 6 ∂να +
g√
2

(

ν̄α,Lγ
µlα,LW

+
µ + h.c.

)

+
g

2 cos θw

ν̄α,Lγ
µνα,LZµ

]

−
∑

α,β=e,ν,τ

(ν̄α,Lmαβνβ,R + h.c) , (3.29)

Neutrino masses, whether Dirac or Majorana, imply lepton mixing. Note that only left-

handed neutrinos couple to the weak gauge bosons W± and Z0. The Dirac and Majorana

mass term:

−LDirac
m =

∑

α,β=e,ν,τ

(ν̄α,Lmαβνβ,R + h.c) , (3.30)

−LMajorana
m =

1

2

∑

α,β=e,ν,τ

(ν̄α,Lmαβνβ,L + h.c) , (3.31)

is in general off-diagonal (i.e. m can be non-zero even if α 6= β). This means that the

flavor eigenstates or interaction eigenstates να (α = e, µ, τ) do not have a definite mass.

In the Dirac case, the mass matrices can be diagonalized by a bi-unitary rotation:

m = UmDiracV
†, (3.32)

where mDiac = diag(m1,m2,m3) is diagonal matrix and U and V are unitary matices,

while in the Majorana case, the neutrino mass matrix, being symmetric, can be taken to a

diagonal form by:

m = U †mMajoranaU
∗, (3.33)

where mMajorana = diag(m1,m2,m3) is diagonal matrix. we can define the neutrino

mass eigenstates as:

νj,L ≡
∑

α

U∗
α,jνα,L (3.34)

νj,R ≡
∑

α

V ∗
α,jνα,R. (3.35)

Then, the Dirac and Majorana mass term can be rewritten as:

−LDirac
m =

∑

α=e,ν,τ

(ν̄α,Lmανα,R + h.c) (3.36)
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−LMajorana
m =

∑

α=e,ν,τ

(ν̄α,Lmανα,L + h.c) . (3.37)

The unitary 3 × 3 mixing matrix U , is known as Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) mixing matrix. A standard parametrization of the mixing matrices for Dirac,

UP MNS, and Majorana, ŨP MNS, is:

UP MNS =











1 0 0

0 c23 s23

0 −s23 c23





















c13 0 −s13e
−iδ

0 1 0

−s13e
iδ 0 c13





















c12 s12 0

−s12 c12 0

0 0 1











, (3.38)

ŨP MNS = UP MNS (θ12, θ13, θ23, δ)











1 0 0

0 eiα1 0

0 0 eiα2











, (3.39)

where, in general θij ∈ [0, π/2] and δ, α1, α2 ∈ [0, 2π]. On the other hand, s12 = sin θ12,

s12 = sin θ12, δ is the CP-violating phase, and the extra phases α1,2, only come into play

in double-beta decay.

3.0.3.2 Oscillations in vacuum

The most spectacular implication of neutrino masses and mixings is the macroscopic

quantum phenomenon of neutrino oscillations, first introduced by B. Pontecorvo [333].

The Nobel prize in 2015 has been awarded to T. Kajita (from the SuperKakiokande

collaboration) and A. B. McDonald (from the SNO collaboration) for the discovery of

neutrino oscillations, which shows that neutrinos have a mass (See Fig. 11). We have seen

that the neutrino flavour fields (νe, νµ, ντ ) that couple via CC to the leptons(e, µ, τ) are

unitary combinations of the mass eigenstates fields (ν1, ν2, ν3):











νe

νµ

ντ











= UP MNS(θ12, θ13, θ23, Phases)











ν1

ν2

ν3











. (3.40)

In a neutrino oscillation experiment, neutrinos are produced by a source (e.g., pion or

µ decays, nuclear reactions,..., etc.) and are detected some macroscopic distance, L,

away from the production point. They are produced and detected via weak processes

in combination with a given lepton flavour in flavour states. As these states propagate

undisturbed in space-time from the production to the detection regions, the different mass

eigenstates, having slightly different phase velocities, pick up different phases, resulting in

a non-zero probability that the state that arrives at the detector is in a different flavour
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combination to the one initially produced. The probability for this flavour transition

oscillates with the distance traveled. Two ingredients are mandatory for this phenomenon

to take place:

• Neutrinos must keep quantum coherence in propagation over macroscopic distances,

which is only possible because they are so weakly interacting.

• There is sufficient uncertainty in momentum at production and detection so that a

coherent flavour state can be produced20.

In addition to this, there are two types of experiments that can be envisaged:

• Appearance experiments, where one searches for the appearance of states with a

new flavour in a beam. Such experiments are, by necessity, particularly sensitive to

mixing parameters.

• Disappearance experiments, where one looks for the disappearance of neutrinos of the

initial flavour from a beam. Such experiments might involve, in particular, electron

neutrinos in case there is not sufficient energy available to create neutrinos of another

kind. Such is the situation with reactor-produced neutrinos and solar neutrinos,

whose energy is far below the rest masses of the charged µ– and τ -leptons. These

kinds of the experiment are particularly sensitive to small energies and therefore

also to small mass values.

For solar neutrinos, only experimental situation 2 is feasible for energetic reasons. In the

scheme with neutrino mixing, the neutrino flavour states are coherent superpositions of

the state vectors of neutrinos with different masses. Since |νi〉 are mass eigenstates, their

propagation can be described by plane wave solutions of the form:

|νi(t)〉 = e−iEi(p)(t−t0) |νi(0)〉 (3.41)

where Ei =
√

p2
i +m2

i is the energy of the mass-eigenstate i, t is the time from the start

of the propagation t0 and p is the three-dimensional momentum. The probability that at

time t the state is in flavour β is:

P (να → νβ)(t) = |〈νβ|να(t)〉|2 = |
∑

i

UβiU
∗
αie

−iEi(p)(t−t0)|2, (3.42)

20 If the momentum uncertainty is sufficiently small, one could kinematically distinguish the
mass eigenstate (produced/detected)
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where we have used the orthogonality relation 〈νi(p)|νj(p)〉 = δij. In the ultrarelativistic

limit, |pi| = pi ≫ mi, we can approximate the energy as:

Ei(p) − Ej(p) ≃ 1

2

m2
i −m2

j

|p| , (3.43)

and L ≃ (t− t0), and so we arrive at the master formula for neutrino oscillation, as:

P (να → νβ) =
∑

i,j

U∗
αiUβiUαjU

∗
βje

−i
∆m2

ij
L

2|p| , (3.44)

where ∆m2
ij = m2

i −m2
j , Uαi are the elements of the PMNS matrix, L is the baseline and

|p| is the neutrino momentum. There are many ways to derive this formula. The simplest

way in most textbooks uses simple quantum mechanics, where neutrinos are treated as

plane waves. A slightly more rigorous method treats neutrinos as wave packets. Finally, it

is also possible to derive it from QFT, where neutrinos are treated as intermediate virtual

states. The different methods make more or less explicit the necessary primary conditions

of neutrino oscillations mentioned above. Let us analyze more closely the master formula

(3.44). The probability is a superposition of oscillatory functions of the baseline with

wavelengths that depend on the neutrino mass differences ∆m2
ij = m2

i − m2
j , Uαi, and

amplitudes that depend on different combinations of the mixing matrix elements. Defining

W ij
αβ ≡

[

U∗
αiUβiUαjU

∗
βj

]

and using the unitarity of the mixing matrix, we can rewrite the

probability in the more familiar form:

P (να → νβ) = δαβ − 4
∑

j>i

Re
[

W ij
αβ

]

sin2

(

∆m2
ijL

4Eν

)

∓
∑

j>i

Im
[

W ij
αβ

]

sin2

(

∆m2
ijL

2Eν

)

(3.45)

, where the ∓ refers to neutrino/antineutrino and |p| ≃ Eν . We refer to an appearance

or disappearance oscillation probability when the initial and final flavours are different

(α 6= β) or the same (α = β), respectively. Note that oscillation probabilities show the

expected GIM21 suppression of any flavor-changing process: they vanish if the neutrinos

are degenerate. In the simplest case of two-family mixing, the mixing matrix depends on

just one mixing angle:

UP MNS =





cos θ sin θ

− sin θ cos θ



 , (3.46)

21 In quantum field theory, the GIM mechanism (or Glashow–Iliopoulos–Maiani mechanism) is
the mechanism by which neutral currents that change flavor are suppressed.
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and there is only one mass square difference ∆m2. The oscillation probability of Eq. (3.45)

simplifies to the well-known expression where we have introduced convenient physical

units:

P (να → νβ) = sin2 2θ sin2

(

1.27
∆m2(eV 2)L(km)

Eν(GeV )

)

, α 6= β. (3.47)

P (να → να) = 1 − P (να → νβ). (3.48)

The probability is the same for neutrinos and antineutrinos because there cannot be CP

violation when there are only two families. Indeed CPT implies that the disappearance

probabilities are the same for neutrinos and antineutrinos, and therefore according to

Eq. (3.47) the same must hold for the appearance probability. The latter is a sinusoidal

function of the distance between source and detector, with a period determined by the

oscillation length:

Losc = π
Eν(GeV )

1.27∆m2(eV 2)
, (3.49)

which is proportional to the neutrino energy and inversely proportional to the neutrino

mass square difference. The amplitude of the oscillation is determined by the mixing angle

and it is maximal for sin2 2θ = 1 or θ = π/4. In many neutrino oscillation experiments,

the baseline is not varied, but the oscillation probability can be measured as a function of

the neutrino energy. In this case, the position of the first maximum contains information

on the mass splitting:

Emax(GeV ) = 1.27
∆m2(eV 2)L(km)

π/2
. (3.50)

An optimal neutrino oscillation experiment in a vacuum is such that the ratio of the

neutrino energy and baseline length is tunned to be the same order as the mass splitting,

E/L ∼ ∆m2. If E/L ≫ ∆m2, the oscillation phase is small and the oscillation probability

depends on the combination P (να → νβ) ∝ sin2 2θ(∆m2)2, and the mixing angle and mass

splitting cannot be disentangled. The opposite limit E/L ≪ ∆m2 is the fast oscillation

regime, where one can only measure an energy or baseline-smeared oscillation probability:

〈P (να → νβ)〉 ≃ 1

2
sin2 2θ. (3.51)

It is interesting to note that this averaged oscillation regime gives the same result as the

flavour transition probability in the case of incoherent propagation (L ≫ Lcoh), such that:

P (να → νβ) = |UαiUβi|2 = 2 cos2 θ sin2 θ =
1

2
sin2 2θ. (3.52)
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Flavour transitions via incoherent propagation are sensitive to mixing but not neutrino

mass splitting. The ’smoking gun’ for neutrino oscillations is not the flavour transition,

which can occur in the presence of neutrino mixing without oscillations, but the peculiar

L/Eν dependence. An optimal experiment that intends to measure both the mixing and

the mass splitting requires running E/L ∼ ∆m2.

Figure 11 – The oscillation of a 100 TeV neutrino that starts out in an initial flavor state
of νe, νµ, or ντ from top to bottom. The best-fit oscillation parameters from [30] are used.
The right-most panels show the oscillation-averaged transition probability to νe in blue,
νµ in green, ντ in red. Distances are shown in astronomical units, illustrating a 100 TeV

neutrino would undergo many oscillations if it originated outside the Solar System.

3.0.3.3 Oscillations in matter

Up to now, we have considered the propagation of massive neutrinos in a vacuum.

We have seen that the flavor content of the neutrino beam in a vacuum is determined by

the neutrino mass-squared differences ∆m2 and elements of the neutrino mixing matrix

UP MNS. As was first shown by Wolfenstein, in the case of matter, neutrino masses and

mixing and the coherent scattering of neutrinos in the matter must be taken into account.

The electron number density determines the contribution of the coherent scattering into

the Hamiltonian. Suppose the electron density depends on the distance (as in the case

of the sun). In that case, the transition probabilities between different flavor neutrinos

can have resonance character (MSW effect)22. When neutrinos propagate in the matter

(Earth, sun, etc.), their propagation is modified owing to coherent forward scattering on

electrons and nucleons. First of all, if it is a νe, if and only if it can exchange a W boson

22 The Mikheyev–Smirnov–Wolfenstein effect (often referred to as matter effect) is a particle
physics process which can act to modify neutrino oscillations in matter.
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with an electron. This gives rise to an extra potential energy of interaction VW . Clearly

this extra energy would be proportional to the Fermi coupling constant GF and coming

from νe − e scattering it would also be proportional to the number of electrons per unit

volume Ne. Thus, from the standard model we have:

VW = +
√

2GFNe. (3.53)

Second, a neutrino in matter can exchange a Z boson with an electron, proton, or neutron

with the medium. The standard model tells us that any flavour can do it and that the

amplitude is independent of that flavour. Likewise, it tells us that the couples to the electron

and the positron at zero momentum transfer are equal and opposite. Assuming then that

the matter through which the neutrino travels is electrically neutral, the contributions of

the scattering with the electron and the proton with the neutrino through the exchange

of Z cancel each other. Therefore, the exchange of one Z gives rise only to a neutrino

flavour-independent interaction potential VZ that depends only on Nn, the number of

neutrons per unit volume, such that:

VZ = −
√

2GFNn. (3.54)

The standard model interactions do not change the flavor of the neutrino. Therefore, unless

hypothetical non-standard-model flavor-changing interactions are at work, the observation

of neutrino flavor change implies a mass for the neutrino and mixing even as neutrinos

pass through matter. And that, as for VW , this interaction energy changes sign if we

change neutrinos by antineutrinos. In the case of two flavours, the effective mass and

mixing angle have relatively simple expressions:

∆m̃2 =

√

(

∆m2 cos 2θ ∓ 2
√

2EGFNe

)2
+ (∆m2 sin 2θ)2 (3.55)

where the sign ∓ corresponds to neutrinos/antineutrinos. In the sun the density of elec-

trons is not constant. However, if the variation is sufficiently slow, the eigenstates will

change slowly with the density, and we can assume that the neutrino produced in an

eigenstate in the center of the sun, remains in the same eigenstate along the trajectory.

This is the so-called adiabatic approximation.

In the Standard Model neutrinos have always been treated as massless particles

and it is only the discovery of neutrino oscillations which has given us any evidence to

suggest otherwise. The fact that any oscillations occur means that one of the ∆m2
ij,

implying that at least one of the neutrino masses must also be non-zero. In fact, since all

of the mass splittings are measured to be non-zero at least two of the masses are required



67

to be non-zero. However, as discussed in the last section, oscillations are insensitive to

the absolute values of the neutrino masses and can only observe the differences between

them. At present the masses have proven to be so small that they are inaccessible to

current experiments. The end-point of tritium beta-decay in the Troitzk experiment sets

the world’s most stringent limit: mνe < 2.05eV at 95% CL. Though it should be noted

that the mass measured here, mνe , is that of a flavour state, and therefore represents a

combination of the three mass states it contains.

Even with the mass differences we can measure, thus far it has not been possible

to determine the sign of ∆m2
31. The two possibilities are referred to as the “normal”

(∆m2
31 > 0) and “inverted” (∆m2

31 < 0) hierarchies, and amount to a choice between which

of the mass states is largest:

• Normal Hierarchy Ordering (NO): m3 > m2 > m1

• Inverted Hierarchy Ordering (IO): m2 > m1 > m3

The difficulty in determining the sign is essentially caused by the uncertainties on ∆m2
23

and ∆m2
31 being larger than the size of ∆m2

21, and therefore the sign has a negligible effect

on the oscillation probabilities compared to current experimental uncertainties. It is only

matter effects in solar neutrino oscillations that have allowed us to determine the sign of

∆m2
21.

With the last results in mind, we review the current and most updated predictions

test of parameters in PMNS matrix. The results are obtained in the global neutrino

oscillations fit and they are summarized in Tab. (4), for normal (NO) and inverted (IO)

mass ordering. Some comments are in order. First we note that the improved precision on

θ13 follows mainly from the Daya Bay data. Thanks to the combination of T2K neutrino

and antineutrino data, exist now an improved sensitivity to CP violation. Indeed, T2K is

the first experiment showing a sensitivity on its own, excluding some values of δ before

combining with reactor data.

3.1. Neutrinos in cosmology and big questions

When we introducing massive neutrinos inside the image of the standard model of

cosmology (Λ+CDM), and allowing for a more general DE component with constant EoS

w, with density parameter ΩDE, equation (2.76) becomes:

E(a) =

√

Ωr0a−4 + Ωm0a−3 + ΩK0a−2 + ΩXe
∫

1

0

da′

a′ [1+w(a′)] + Ων(a) , (3.56)
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Parameter Best fit ±1σ 2σ range 3σ range

∆m2
21 [10−5eV 2] 7.56 ± 0.19 7.20 - 7.95 7.05 - 8.14

|∆m2
31| [10−5eV 2] (NO) 2.55 ± 0.04 2.47 - 2.63 2.43 - 2.67

|∆m2
31| [10−5eV 2] (IO) 2.49 ± 0.04 2.41 - 2.57 2.37 - 2.61

sin2 θ12/10−1 3.21+0.18
−0.16 2.89 - 3.59 2.73 - 3.79

θ12/
◦ 34.5+1.1

−1.0 32.5 - 36.8 31.5 - 38.0

sin2 θ23/10−1 (NO) 4.30+0.20
−0.18 3.98 - 4.78 3.84 - 6.35

θ23/
◦ 41.0 ± 1.1 39.1 - 43.7 38.3 - 52.8

sin2 θ23/10−1 (IO) 5.96+0.17
−0.18 4.04 - 4.56 3.88 - 6.38

θ23/
◦ 50.5 ± 1.0 39.5 - 42.5 38.5 - 53.0

sin2 θ13/10−1 (NO) 2.155+0.090
−0.075 1.98 - 2.31 1.89 - 2.39

θ13/
◦ 8.44+0.18

−0.15 8.10 - 8.70 7.90 - 8.90
sin2 θ13/10−1 (IO) 2.140+0.082

−0.085 1.97 - 2.30 1.98 - 2.39
θ13/

◦ 8.41+0.16
−0.17 8.00 - 8.70 7.90 - 8.90

δ/π (NO) 1.40+0.31
−0.20 0.85 - 1.95 0.00 - 2.00

δ/◦ 252+56
−36 153 - 351 0 - 360

δ/π (IO) 1.44+0.26
−0.23 1.01 - 1.93 0.00 - 0.17

δ/◦ 259+47
−41 182 - 347 0 - 31

Table 4 – Updated fits to parameters of the mixing matrix.

where E(a) = H(a)/H0 and Ων(a) = ρν(a)/ρcr denotes the neutrino energy density as

a function of scale factor (a = 1/(1 + z)). In equation (3.56), we have not specified a

functional form for Ων(a) since neutrinos behave as radiation (or hot dark matter at late

times) in the early Universe and matter (dust) at late times, implying that the scaling of

their energy density with z is non-trivial. Nevertheless, as anticipated earlier we know

that in the very early Universe, when neutrinos behave as radiation:

Ων ∝ (1 + z)4, (3.57)

whereas at very late times, when neutrinos behave as matter, such that:

Ων ∝ (1 + z)3. (3.58)

With this in mind, we only need a couple of details to know exactly which are the analytical

expressions that correspond to each energy domain, namely:

• We know from Eq. 3.0.2, that there are three generations of active neutrinos, which

in their primordial form, are known to contribute significantly to the radiation
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content, through the number of degrees of freedom of relativistic species Nν , such

that: ρrad ∝ ρphot + ρν(Nν).

• Regarding the contribution of promondial neutrinos to the density content of matter,

we know that at least one species of the three active neutrinos ceases to be relativistic

and acquires mass as the universe evolves. However, we need the Boltzman equation

to know the energy density that contributes to the matter content of the universe,

such that: ρm0 ∝ ρDM + ρBaryons + ρν .

These aspects will be covered in the next chapter (Chap. (4)), where we will deal with the

solution to Boltzman’s equation for different types of species, which constitute the matter

and energy content of the universe, including relativistic and non-relativistic neutrinos,

which we will call hereafter hereafter as: Cosmic Neutrino Background (CνB).

To finish this chapte, let us consider that many of the keys to the new physics come

from cosmology, which has made fast progress over the last few years. For example, it is

truly remarkable that about 5% of the entire Universe consists of stuff we know, and all the

rest remains a complete mystery, dubbed dark matter and dark energy. For example, we

mention dark matter, whose exact nature remains elusive, despite solid evidence in favor

of its existence, ever since the pioneering observations of the astronomer Fritz Zwicky in

the 1930s. Dark matter neither emits nor scatters light or other electromagnetic radiation;

hence it cannot be detected directly by optical or radio astronomy. Nevertheless, most

of the matter in the Universe is indeed non-luminous, and its existence is also inferred

by modeling structure formation and galaxy evolution. However, we still do not know its

composition. Viable dark matter particle physics candidates must be electrically neutral

and provide the correct relic abundance, hence they must be stable over cosmological time

scales. The most popular candidate is a weakly interacting massive particle (WIMP), the

lightest supersymmetric particle in models with conserved R-parity. Although neutrinos

cannot provide the required amount of dark matter, the physics through which they acquire

their small masses may be closely connected, providing a fascinating link between neutrinos

and early Universe cosmology. One exciting possibility is that dark matter is stabilized

by a remnant of the flavour symmetry, which explains the oscillation pattern. Many

other types of relations between dark matter and neutrinos can be considered. Another

open issue in cosmology is the understanding of the matter-antimatter asymmetry. An

attractive mechanism is to generate a primordial lepton–anti-lepton asymmetry through

the out-of-equilibrium CP-violating decays of the messenger particles responsible for

neutrino mass. This would take place very early on in the evolution of the Universe, while

subsequent non-perturbative processes would convert the lepton number (B-L) asymmetry

into a baryon asymmetry. In such a leptogenesis picture, neutrinos are responsible for

the origin of matter. To sum up, over the last century, neutrinos have provided a crucial
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tool in our understanding of weak interactions and guidance in formulating today’s SM of

particle physics. It is not risky to imagine that they may also help in directing us towards

the ‘theory of everything that lies ahead. Among the challenges in present-day particle

physics, many are coming from the neutrino sector. Some of them are as follows:

1. The Nature of Neutrinos. Is lepton number violated in nature? Are neutrinos

their own anti-particles?. The observation of neutrinoless double beta decay (ββ0ν)

would provide the answer and many experiments are going on.

2. The Origin of Neutrino Mass. Why are neutrinos so light when compared the

other elementary fermions? Is this a hint for some sort of unifica- tion of the gauge

interactions? Are neutrino masses a low-scale phenomenon?

3. The Pattern of Neutrino Mixing. ⁀Why are lepton mixing angles so differ- ent

from the CKM mixing angles? Is there an underlying symmetry of flavour?

4. Probing Non-standard Neutrino Interactions. Is there lepton flavour viola-

tion beyond that seen in oscillations? Do they show up in neutrino propa- gation?

5. Charged Lepton Flavour Violation and CP Violation. Do processes such

as µ −→ e + γ take place? Is leptonic CP violated? Does lepton flavour violation

take place at LHC energies?. This would be truly complementary to the oscillation

studies.

6. Probing Neutrinos at High Energy Accelerators. Can neutrino properties be

probed at LHC energies and higher? Is tera-eV scale supersymmetry the origin of

neutrino mass?

7. Neutrino Cosmology. Owing to their weak interaction, neutrinos constitute an

ideal probe of the early Universe, and may shed light on the origin of dark matter.

Can the origin of dark matter and neutrino mass be related?

These are some of the challenges of today, which should inspire our research efforts in

search of clues to the theory of tomorrow and which are the guide to address this thesis,

from a theoretical-observational perspective.
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Chapter 4

Neutrinos in the early ages

“Cosmology brings us face to face with the deepest mysteries, questions that were

once treated only in religion and myth.” – Carl Sagan in Cosmos: A Personal Voyage,

Episode 10: “The Edge of Forever” (1980)

In this Chapter we discuss the application of Boltzmann equation in cosmology.

In particular, we address Big Bang Nucleosynthesis (BBN), recombination of protons

and electrons in neutral hydrogen atoms and the relic abundance of CDM (see [57], [92]

and [26]).

4.1. Thermal equilibrium and Boltzmann equation

We have encountered in the previous Chapter the continuity equation (2.74):

ε̇+ 3H(ε+ P ) = 0 , (4.1)

where recall that the dot represents derivation with respect to the cosmic time. Surprisingly,

it is possible to obtain the continuity equation by using the first and second law of

thermodynamics, i.e.

TdS = PdV + dU , (4.2)

where T is the temperature, S is the entropy, V is the volume and U is the internal energy
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of the cosmic fluid. Now, assuming adiabaticity, i.e. dS = 0, and writing U = εV , one gets

PdV + d(εV ) = 0 ⇒ V dε+ (ε+ P )dV = 0 . (4.3)

In using Eq. (4.2), we have made a very strong assumption: the evolution of the universe is

an adiabatic reversible transformation, i.e. at each instant the universe is in an equilibrium

state. In some instances we can trust this assumption and it gives the correct continuity

equation. In particular, we will see that Eq. (4.1) can be obtained from Boltzmann equation

assuming no interactions among particles or assuming a very high rate of interactions so

that thermal equilibrium is reached. The latter instance can be mathematically represented

as follows:

Γ ≫ H, (4.4)

i.e. the interaction rate is much larger than the Hubble rate, where the interaction rate is

defined as follows:

Γ ≡ nσvrel (4.5)

where n is the particle number density of projectiles, vrel is the relative velocity between

projectile and targets and σ is the cross section. Equation (4.4) can also be rephrased as

the fact that the mean-free-path is much smaller than the Hubble radius. In this situation,

particles interact so frequently that they do not even care about the cosmological expansion

and any fluctuation in their energy density is rapidly smoothed out, thus recovering thermal

equilibrium. It is important to make distinction between kinetic equilibrium and chemical

equilibrium. When Γ ≫ H refers to a process of the type:

1 + 2 ↔ 3 + 4 , (4.6)

i.e. we have four different particle species which transform into each other in a balanced

way, then we have chemical equilibrium. This can be also reformulated as:

µ1 + µ2 = µ3 + µ4 (4.7)

where the µ’s are the chemical potentials. On the other hand, when Γ ≫ H refers to a

reaction such as a scattering:

1 + 2 ↔ 1 + 2 , (4.8)
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then we have kinetic equilibrium. Kinetic or chemical equilibrium (or both) imply thermal

equilibrium. In general, it is possible for a species to break chemical equilibrium and still

remain in kinetic, therefore thermal, equilibrium with the rest of the cosmic plasma through

scattering processes.1 Note that Γ is different for different fundamental interactions and

for different particle species masses. Therefore, the above condition (4.4) is valid for

all the known (and perhaps unknown) particles in the very early universe but is broken

at different times for different species. This is the essence of the thermal history of the

universe. So, at the very beginning (we are talking about tiny fractions of seconds after

the Big Bang) all the particles were in thermal equilibrium in a primordial soup, the

primordial plasma. When for a species, the condition Γ ∼ H is reached, it decouples from

the primordial plasma. If it does this by breaking the chemical equilibrium, then it is said

to freeze out and attains some fixed abundance.2 When we want to explicitly calculate

the residual abundance of some species, we have to track its evolution until Γ ∼ H. In

this instance, equilibrium thermodynamics fails and we are compelled to use Boltzmann

equation. For example, we shall use Boltzmann equation when analysing the formation of

light elements during BBN, the recombination of protons and electrons in neutral hydrogen

atoms and the relic abundance of CDM. The fundamental interactions which characterise

the above-mentioned processes compel some particles to react and transform into others

and vice-versa, such as in Eq. (4.6). When Γ ≫ H these reactions take place with equal

probability in both directions, hence the ↔ symbol, but when Γ ∼ H eventually one

direction is preferred over the other. This is the characteristic of irreversibility which

demands the use of Boltzmann equation.

4.2. The entropy density

For many of the forthcoming purposes the hypothesis of thermal equilibrium is

suitable and very useful. As we have stated at the beginning of this chapter, it is justified

in those instances in which the interaction rate among particles is much higher than the

expansion rate. In these cases, one can use equilibrium thermodynamics and a very useful

quantity is the entropy density:

s ≡ S

V
, (4.9)

because, as we will show in a moment, sa3 is conserved. In thermal equilibrium, we can

1 This occurs in some DM particle models. For example a m = 100 GeV WIMP chemically
decouples at 5 GeV and kinetically decouples at 25 MeV. See e.g. [151].

2 It attains a fixed abundance if it is a stable particle, of course. If not it disappears.
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cast the thermodynamical relation (4.2) in the following form:

TdS = V dε+ (ε+ P )dV = V
dε

dT
dT + (ε+ P )dV , (4.10)

because the energy density (and also the pressure) only depends on the temperature T .

The integrability condition applied to Eq. (4.10) yields to:

∂2S

∂T∂V
=

∂2S

∂V ∂T
⇒ T

dP

dT
= ε+ P . (4.11)

Bosons and fermions in thermal equilibrium are distributed according to the Bose-Einstein

and Fermi-Dirac distributions:

fBE =
1

exp
(

E−µ
kBT

)

− 1
, fFD =

1

exp
(

E−µ
kBT

)

+ 1
(4.12)

We now prove Eq. (4.11) in another way, assuming a distribution function of the type

f = f(E/T ). We first must know how to calculate dP/dT . Call E/T = x and f ′ ≡ df/dx.

Then:

df = f ′dx =
f ′

T
dE − f ′E

T 2
dT . (4.13)

Comparing this with

df =
∂f

∂E
dE +

∂f

∂T
dT , (4.14)

we can establish that

∂f

∂T
= −E

T

∂f

∂E
. (4.15)

Now we use this result into:

dP

dT
= gs

∫ d3p
(2π~)3

∂f

∂T

p2c2

3E
, (4.16)

and obtain

dP

dT
= −gs

∫ d3p
(2π~)3

E

T

∂f

∂E

p2c2

3E
. (4.17)

Now we introduce spherical coordinates in the proper momentum space:

d3p = p2dpd2p̂ , (4.18)
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and use the dispersion relation E2 = p2c2 +m2c4 in order to write

∂f

∂E
=
∂f

∂p

dp

dE
=
∂f

∂p

E

pc2
. (4.19)

Equation (4.17) thus becomes:

dP

dT
= −gs

∫ p2dpd2p̂

(2π~)3

E

T

∂f

∂p

p

3
. (4.20)

Integrating by parts:

dP

dT
= −gs

4π

(2π~)3

Ep3

3T
f

∣

∣

∣

∣

∣

∞

0

+ gs

∫ dpd2p̂

(2π~)3

1

3T
f

(

3p2E + p3pc
2

E

)

, (4.21)

where we have used again dE/dp = pc2/E. The first contribution vanishes for p → ∞,

since f → 0, i.e. there are no particles with infinite momentum. Recovering the momentum

volume d3p, we get:

dP

dT
= gs

∫ d3p
(2π~)3

1

T
f

(

E +
p2c2

3E

)

⇒ dP

dT
=
ε+ P

T
(4.22)

as we wanted to show. We now prove that the temperature derivative of the pressure is

the entropy density. Substituting Eq. (4.11) into Eq. (4.10), i.e.

TdS = d(εV ) + PdV = d[(ε+ P )V ] − V dP , (4.23)

one gets

dS =
1

T
d[(ε+ P )V ] − V

ε+ P

T 2
dT = d

[

(ε+ P )V

T

]

, (4.24)

i.e. up to an additive constant:

s ≡ S

V
=
ε+ P

T
. (4.25)

Taking into account the chemical potential µ, the thermodynamical relation (4.2) becomes

TdS = d(εV ) + PdV − µd(nV ) , (4.26)

and the entropy density is redefined as

s ≡ S

V
=
ε+ P − µn

T
(4.27)
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Using the continuity equation and/or Eq. (4.2), we can show that sa3 is a constant:

d

dt
(sa3) = 0 (4.28)

i.e. the entropy density is proportional to 1/a3.

4.3. Photons

In these notes we use “photons” as synonym of CMB, though this is not correct since

there exist photons whose origin is not cosmological, e.g. those produced in our Sun as well

as in other stars or emitted by hot interstellar gas. These say non-cosmological photons

contribute at least one order of magnitude less than CMB photons [41] so our sloppiness

is partially justified. Assuming a vanishing chemical potential since µ/(kBT ) < 9 × 10−5,

as reported by [65], the Bose-Einstein distribution for photons becomes:

fγ =
1

exp
(

E
kBT

)

− 1
=

1

exp
(

pc
kBT

)

− 1
, (4.29)

where we have used the dispersion relation E = pc. Taking into account the chemical

potential is important in order to study distortions in the CMB spectrum, which is a very

recent and promising research field [44], [43]. Let us calculate the photon energy density:

εγ = 2
∫ d3p

(2π~)3

pc

exp
(

pc
kBT

)

− 1
, (4.30)

where the factor 2 represents the two states of polarisation of the photon. The angular

part can be readily integrated out, giving a factor 4π. We are left then with:

εγ =
c

π2~3

∫ ∞

0
dp

p3

exp
(

pc
kBT

)

− 1
. (4.31)

Let us do the substitution x ≡ pc/(kBT ). We obtain:

εγ =
c

π2~3

(

kBT

c

)4
∫ ∞

0
dx

x3

ex − 1
. (4.32)

The integration is proportional to the Riemann ζ function, which has the following integral

representation:

ζ(s) =
1

Γ(s)

∫ ∞

0
dx

xs−1

ex − 1
=

1

(1 − 21−s)Γ(s)

∫ ∞

0
dx

xs−1

ex + 1
, (4.33)
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where Γ(s) is Euler gamma function. In alternative, a possible way to perform the

integration is the following. Let I− be:

I− ≡
∫ ∞

0
dx

x3

ex − 1
=
∫ ∞

0
dx

e−xx3

1 − e−x
. (4.34)

Now use the geometric series in order to write

1

1 − e−x
=

∞
∑

n=0

e−nx , (4.35)

and substitute this in the integral I−:

I− =
∞
∑

n=0

∫ ∞

0
dx e−(n+1)xx3 . (4.36)

Integrate the above equation three times by part and show that:

I− = 6
∞
∑

n=1

1

n3

∫ ∞

0
dx e−nx . (4.37)

Integrate again and find:

I− = 6
∞
∑

n=1

1

n4
≡ 6ζ(4) =

π4

15
, (4.38)

in agreement with Eq. (4.33). Therefore, the photon energy density is the following:

εγ =
π2

15~3c3
(kBT )4 . (4.39)

This is the Stefan-Boltzmann law, of the black-body radiation. From the continuity

equation we know that εγ = εγ0/a
4 so that we can infer that

T =
T0

a
, T0 = 2.725 K (4.40)

i.e. the temperature of the photons decreases with the inverse scale factor. This is a result

that we will prove also using the Boltzmann equation (indeed the continuity equation

that provides εγ = εγ0/a
4 is a way of writing the Boltzmann equation). In the above

equation (4.40), the value of T0 is the measured one of the CMB. Knowing this value, we

can estimate the photon energy content today (and thus at any times):

Ωγ0 =
εγ0

εcr0

=
8π3G

45~3c3H2
0c

2
(kBT0)

4 . (4.41)
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Using H0 = 100 h km s−1 Mpc−1 and the known constants of nature, we obtain:

Ωγ0h
2 = 2.47 × 10−5 . (4.42)

The photon number density is calculated as follows:

nγ =
1

π2~3

∫ ∞

0
dp

p2

exp
(

pc
kBT

)

− 1
. (4.43)

Making the usual substitution x ≡ pc/(kBT ) and using Eq. (4.33) we get:

nγ =
(kBT )3

π2~3c3

∫ ∞

0
dx

x2

ex − 1
⇒ nγ =

2ζ(3)

π2~3c3
(kBT )3, (4.44)

and after replacing in the physical constants, the photon number density today is nγ0 = 411

cm−3.

4.4. Neutrinos

The same comment made at the beginning of the previous section also applies here:

with “neutrinos” we mean the cosmological, or primordial, ones and not those produced e.g.

in supernovae explosions. The massless neutrino energy density also scales as εν = εν0/a
4,

as the photons energy density, but since neutrinos are fermions we need now to employ

the Fermi-Dirac distribution.

ε =
c

2π2~3

(

kBT

c

)4

gs

∫ ∞

0
dx

x3

ex + 1
. (4.45)

Since neutrinos are spin 1/2 fermions, then gν = 2, where gν is the neutrino gs. On

the other hand, neutrinos are particles which interact only via weak interaction and this

violates parity. In other words, only left-handed neutrinos can be detected. Right-handed

neutrinos, if they exist, would interact only via gravity and via the seesaw mechanism with

the left-handed neutrino [69]. Right-handed neutrinos are also called sterile neutrinos and

are advocated as possible candidates for DM [59]. Let I+ be the integral in Eq. (4.45):

I+ ≡
∫ ∞

0
dx

x3

ex + 1
. (4.46)

Using Eq. (4.33), we have:

I+ = (1 − 2−3)I− =
7

8
I− , (4.47)
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i.e. the difference between bosons and fermions energy densities per spin state is simply a

factor 7/8. Taking into account that I− = π4/15, the neutrino energy density (4.45) is:

εν =
7

8
Nνgν

π2

30~3c3
(kBTν)4 (4.48)

where Nν is the number of neutrino families, which, as we saw in chapter (2), is equal to 3

active neutrinos, from the point of view of particle physics (see Eq. (3.9)). Of course, an

equivalent expression holds true for antineutrinos.

4.4.1 Temperature of the massless neutrino thermal bath

As we have seen in Eq. (4.28), for a species in thermal equilibrium its entropy density

s is proportional to 1/a3. Moreover, if that species is relativistic then its temperature T

scales as 1/a. Therefore, for a relativistic species in thermal equilibrium s ∝ T 3. Since

photons and neutrinos do not interact, it is reasonable to ask whether the temperatures

of the photon thermal bath and of the neutrino thermal bath are the same. We cannot

observe the neutrino thermal bath today, but we can indeed predict different temperatures.

When the temperature of the photon thermal bath was sufficiently high, positron-electron

annihilation and positron-electron pair production were balanced reactions:

e+ + e− ↔ γ + γ . (4.49)

In order to produce e+-e− pairs, the photons must have temperature of the order of 1

MeV at least. Therefore, when the temperature of the photon thermal bath drops below

that value, the above reactions are unbalanced and more photons are thus injected in the

thermal bath. For this reason we expect the photon temperature to drop more slowly

than 1/a and then to be different from the neutrino temperature. We now quantify this

difference using the conservation of sa3. For a relativistic bosonic species (such as the

photon), the entropy density is:

sboson =
ε+ P

T
=

4ε

3T
= gs

2π2k4
B

45~3c3
T 3 (4.50)

whereas for a relativistic fermion species (such as the neutrino), the entropy density is:

sfermion =
7

8
gs

2π2k4
B

45~3c3
T 3 (4.51)
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Therefore, at a certain scale factor a1 earlier than e−-e+ annihilation, the entropy density

is:

s(a1) =
2π2k4

B

45~3c3
T 3

1

[

2 +
7

8
(2 + 2) +

7

8
Nν (gν + gν)

]

, (4.52)

where we have left explicit all the degrees of freedom, i.e. 2 for the photons, 2 for the

electrons, 2 for the positrons, gν for the neutrinos and gν for the antineutrinos. Moreover,

we have assumed the same temperature T1 for photons and neutrinos because they came

from the original thermal bath (the Big Bang). At a certain scale factor a2 after the

annihilation the entropy density is:

s(a2) =
2π2k4

B

45~3c3

(

2T 3
γ +

7

4
NνgνT

3
ν

)

, (4.53)

where we have now made distinction between the two temperatures. Equating

s(a1)a
3
1 = s(a2)a

3
2 , (4.54)

we obtain

(a1T1)
3
[

2 +
7

4
(Nνgν + 2)

]

= (a2Tν)3

[

2
(

Tγ

Tν

)3

+
7

4
Nνgν

]

. (4.55)

Since (a1T1)
3 = (a2Tν)3, because the neutrino temperature did not change its ∝ 1/a

behaviour, we are left with:

Tν

Tγ

=
(

4

11

)1/3

≈ 0.714 (4.56)

Therefore, since the CMB temperature today is of Tγ0 = 2.725 K, we expect a thermal

neutrino background of temperature Tν0 ≈ 1.945 K. Remarkably, the result of Eq. (4.56)

does not depend on the neutrino gν . Let us open a brief parenthesis in order to justify

the procedure that we have used in order to determine the result in Eq. (4.56). We saw

that for a single species in thermal equilibrium sa3 is conserved because of the continuity

equation. However, during electron-positron annihilation the continuity equation does not

hold true neither for photons nor for electron and positron, i.e.

ε̇γ + 4Hεγ = +Γann , (4.57)

ε̇e + 3H(εe + Pe) = −Γann , (4.58)
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where Γann is the e−-e+ annihilation rate. Therefore, we cannot use the constancy of sa3

for each of these species separately. However, we can and did use it for the total, since the

sum of the two above equations gives:

ε̇tot + 3H(εtot + Ptot) = 0 . (4.59)

In other words, the continuity equation always applies if one suitably extends the set

of species, ultimately because of Bianchi identities. Using Eq. (4.56), the neutrino and

antineutrino energy densities can be thus related to the photon energy density as follows:

εν = εν̄ =
7

8

Nνgν

2

(

4

11

)4/3

εγ (4.60)

where we have left unspecified the value of the neutrino degeneracy gν and the number of

neutrino families Nν . The total radiation energy content can thus be written as

εr ≡ εγ + εν + εν̄ = εγ

[

1 +
7

8
Nνgν

(

4

11

)4/3
]

. (4.61)

The Planck collaboration [13] has put the constraint

Neff ≡ Nνgν = 3.04 ± 0.33 (4.62)

at 95% CL. Therefore, three neutrino families (Nν = 3) and one spin state for each neutrino

(gν = 1) are values which work fine. Calculating the neutrino + antineutrino number

density today is straightforward:

nν =
Nνgν

π2~3

∫ ∞

0
dp

p2

exp
(

pc
kBTν

)

+ 1
, (4.63)

where now the subscript ν indicates both neutrinos and antineutrinos. Making the usual

substitution x ≡ pc/(kBTν), we get:

nν =
Nνgν(kBTν)3

π2~3c3

∫ ∞

0
dx

x2

ex + 1
=
Nνgν(kBTν)3

π2~3c3

3ζ(3)Γ(3)

2
=

3ζ(3)Nνgν(kBTν)3

2π2~3c3
.

(4.64)

Taking into account (4.56), we obtain

nν =
3

11
Nνgνnγ (4.65)
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4.4.2 Massive neutrinos

The 2015 Nobel Prize in Physics has been awarded to Takaaki Kajita and Arthur

B. McDonald for the discovery of neutrino oscillations, which shows that neutrinos have

mass. Indeed, neutrino flavours oscillate among the leptonic families (electron, muon and

tau), e.g. an electronic neutrino can turn into a muonic one and a tau one, depending on

its energy and on how far it travels (see section (3.0.3)). The most stringent constraints on

neutrino mass do not come from particle accelerators but cosmology:
∑

mν < 0.194 eV at

95% CL from the Planck collaboration [13]. The neutrino mass is thus very small and this

does not change relevantly the early history of the universe whereas it has some impact

at late-times for structure formation [101]. Using Eq. (??) and the FD distribution, the

massive neutrino energy density can be calculated as follows:

εν =
∫ d3p

(2π~)3

√

p2c2 +m2
νc

4

exp
[√

p2c2 +m2
νc

4/(kBT )
]

+ 1
, (4.66)

where we are assuming gs = 1. Actually, Eq. (4.66) is valid for any fermion (or boson, if

we have the −1 at the denominator), provided we can neglect the chemical potential. For

this reason, we drop the subscript ν and consider a generic species of mass m, fermion or

boson, in order to make more general statements. Rewrite Eq. (4.66) as follows:

ε =
mc2

2π2~3

∫ ∞

0
dp p2

√

p2/(m2c2) + 1

exp
[

A
√

p2/(m2c2) + 1
]

± 1
, A ≡ mc2

kBT
, (4.67)

and calling x ≡ A
√

p2/(m2c2) + 1, the above integration (B.12) becomes:

ε =
m4c5

2π2~3A4

∫ ∞

A
dx

x2
√
x2 − A2

ex ± 1
=

(kBT )4

2π2~3c3

∫ ∞

A
dx

x2
√
x2 − A2

ex ± 1
. (4.68)

Note the lower integration limit.

4.4.3 Relativistic and non-relativistic regimes of particles in thermal equilibrium

Unfortunately, the above integral in Eq. (4.68) cannot be solved analytically. When

A ≪ 1, i.e. the thermal energy is much larger than the mass energy, the integral in

Eq. (4.68) can be expanded as follows:

∫ ∞

A
dx

x2
√
x2 − A2

ex − 1
=
π4

15
− π2A2

12
+ O(A3) , (4.69)

∫ ∞

A
dx

x2
√
x2 − A2

ex + 1
=

7π4

120
− π2A2

24
+ O(A3) . (4.70)
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The zero-order terms recovers the result of Eq. (4.39), for photons, and of Eq. (4.48),

obtained for massless neutrinos. In general, we can state that particles with mass m in

thermal equilibrium at temperature T behave as relativistic particles when mc2 ≪ kBT .

The opposite limit mc2 ≫ kBT is much trickier to investigate analytically, so we shall do

it numerically. Calling x ≡ A
√

p2/(m2c2) + 1, the number density can be written as:

n =
m3c3

2π2~3A3

∫ ∞

A
dx

x
√
x2 − A2

ex ± 1
. (4.71)

The ratio ε/(nmc2) can be written as:

γ ≡ ε

(nmc2)
=

1

A

∫∞
A dx x2

√
x2−A2

ex±1
∫∞

A dx x
√

x2−A2

ex±1

, (4.72)

where γ is indeed some sort of averaged Lorentz factor since it is the ratio of the energy

density to the mass energy density. The behaviour of γ as function of A is shown in

Fig. 12.

Figure 12 – Plot of γ as function of A. The solid line is for fermions whereas the dashed
one for bosons.

From Fig. 12 we can infer that ε/(nmc2) ≈ 1 when mc2 ≫ kBT and therefore the particle

becomes non-relativistic since all its energy is mass energy. In general, we can state that

particles with mass m in thermal equilibrium at temperature T behave as non-relativistic

particles when mc2 ≫ kBT . The transition relativistic → non-relativistic takes place for

kBT ≈ 10mc2. Now, suppose that a single family of neutrinos and antineutrinos became



84

non-relativistic only recently, what would be their energy density and density parameter

today? Being non-relativistic, we can write their energy density as follows:

εmν = ρνc
2 = nνmνc

2 , (4.73)

and thus the density parameter today is:

Ωmν0 =
8πGnν0mν

3H2
0

. (4.74)

Using Eq. (4.65) and the result for nγ0, Eq. (4.74) can be written as:

Ωmν0 =
1

94.22h2
gν
mνc

2

eV
(4.75)

.

Thus, the contribution of massive neutrinos to the present-day critical energy density is

given by:

Ων0 =

∑

mν

94.22h2
, (4.76)

which we had studied in the Chapter 4 (see Eq. (4.75)). From Eq. (4.75) to Eq. (4.76)

we use: c = 1, gν = 1 and mν =
∑

mν , with which we take into account natural physical

units, the degrees of freedom and the three active neutrinos. In this way we can know

exactly what is the contribution of the CνB (see Eq. (3.58)) to the dimensionless density

of matter and so our Eq. (3.56) takes the form:

E(z) =

√

Ωr0a−4 + Ωm0a−3 + ΩK0a−2 + ΩXe
∫

1

0

da′

a′ [1+w(a′)] + Ων0a−3 , (4.77)

Later, we shall see that cosmological observables very often carry the imprint of particular

length scales, in relation to specific physical effects responsible for shaping the observables

themselves (Chapter 6 and 5).

4.4.4 Matter-Radiation equality

The epoch, or instant, at which the energy density of matter (i.e. baryons plus

CDM) equals the energy density of radiation (i.e. photons plus neutrinos) is particularly
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important from the point of view of the evolution of perturbations, as we shall see in

Chapter 6. From Eq. (4.61) we have that:

Ωr0 = Ωγ0

[

1 +
7

8
Neff

(

4

11

)4/3
]

(4.78)

In order to calculate the scale factor aeq of the equality we only need to solve the following

equation:

Ωr0

a4
eq

=
Ωm0

a3
eq

, (4.79)

which gives

aeq =
Ωr0

Ωm0

=
Ωγ0

Ωm0

[

1 +
7

8
Neff

(

4

11

)4/3
]

. (4.80)

Using Eq. (4.42) and Neff = 3 one obtains:

aeq =
4.15 × 10−5

Ωm0h2
⇒ 1 + zeq = 2.4 × 104 Ωm0h

2 (4.81)

What does happen to the equality redshift zeq if one of the neutrino species has mass

mν 6= 0?. If that neutrino species becomes non-relativistic after the equality epoch, then

the above calculation still holds true. Therefore, let us assume that the neutrino species

becomes non-relativistic, thereby counting as matter, before the equality. Since there is

more matter and less radiation we expect the equality to take place earlier, i.e.

aeq =
3.59 × 10−5

(Ωm0 + Ωmν0)h2
1 + zeq = 2.79 × 104 (Ωm0 + Ωmν0)h

2 . (4.82)

Since T = T0(1 + z), the photon temperature at equality is:

Tγ,eq = 2.79 × T0 · 104 (Ωm0 + Ωmν0)h
2 = 7.60 × 104 (Ωm0 + Ωmν0)h

2 K . (4.83)

Using Eq. (4.56), the temperature of neutrinos at equality is:

Tν,eq = 5.43 × 104 (Ωm0 + Ωmν0)h
2 K . (4.84)

The neutrino mass energy mνc
2 has to be larger than kBTν,eq in order for the above

calculation to be consistent. This yields:

mνc
2 > 5.43 kB × 104 (Ωm0 + Ωmν0)h

2 K = 4.68 (Ωm0 + Ωmν0)h
2 eV . (4.85)
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Using Ωm0h
2 = 0.14 and Eq. (4.75) we get mνc

2 > 0.69 eV, which is incompatible with

the constraint
∑

mν < 0.194 found by the Planck collaboration.

4.5. Boltzmann equation

Here is the main character of this Chapter: Boltzmann equation. It is very simple

to write:

df

dt
= C[f ] , (4.86)

but nonetheless very meaningful, as we shall appreciate. Here f is the one-particle

distribution function and C[f ] is the collisional term, i.e. a functional of f describing

the interactions among the particles constituting the system under investigation. The

one-particle distribution is a function of time t, of the particle position x and of the particle

momentum p. In turn, also x and p are functions of time, because of the particle motion.

Therefore, the total time derivative can be written as:

df

dt
=
∂f

∂t
+
dx
dt

· ∇xf +
dp
dt

· ∇pf =
∂f

∂t
+ v · ∇xf + F · ∇pf ≡ L̂(f) , (4.87)

where v is the particle velocity and F is the force acting on the particle. The operator L̂

acting on f is similar to the convective derivative used in fluid dynamics and is also called

Liouville operator. If interactions are absent, then

df

dt
= 0 , (4.88)

is the collisionless Boltzmann equation, or Vlasov equation. It represents mathematically

the fact that the number of particles in a phase space volume element does not change

with the time. Note that we are starting here with the non relativistic version of the

Boltzmann equation. We shall see it later in the general relativistic case and cosmology.

The collisionless Boltzmann equation is a direct consequence of Liouville theorem:

dρ(t,xi,pi)

dt
= 0 , i = 1, · · · , N (4.89)

where ρ(xi,pi, t) is the N -particle distribution function, i.e.

ρ(t,xi,pi)d
NxdNp , (4.90)
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is the probability of finding our system of N particles in a small volume dNxdNp of the

phase space centred in (xi,pi). If the particles are not interacting, then the probability of

finding N particles in some configuration is the product of the single probabilities. That

is, the positions in the phase space of the individual particles are independent events.

Therefore:

ρ ∝ fN ,
dρ

dt
= NfN−1df

dt
, (4.91)

and using Liouville theorem (4.89) one obtains the collisionless Boltzmann equation (4.88).

4.5.1 Boltzmann equation in General Relativity and Cosmology

In GR the distribution function must be expressed covariantly as f = f(xµ, P µ),

and the total derivative of f cannot be taken with respect to the time because this would

violate the general covariance of the theory. The total derivative of f is taken with respect

to an affine parameter λ, as follows:

df

dλ
=

∂f

∂xµ

dxµ

dλ
+

∂f

∂P µ

dP µ

dλ
. (4.92)

The geometry enters through the derivative of the four-momentum, which can be expressed

via the geodesic equation:

dP µ

dλ
+ Γµ

νρP
νP ρ = 0 , (4.93)

so that

df

dλ
= P µ ∂f

∂xµ
− Γµ

νρP
νP ρ ∂f

∂P µ
≡ L̂rel(f) , (4.94)

where we have defined the relativistic Liouville operator L̂rel. It might seem that in the

relativistic case we have gained one variable, i.e. P 0, but this is not so because P 0 is

related to the spatial momentum P i via the relation gµνP
µP ν = −m2c2. For this reason,

we can reformulate the Liouville operator as follows:

df

dλ
= P µ ∂f

∂xµ
− Γi

νρP
νP ρ ∂f

∂P i
, (4.95)

i.e. by considering f = f(xµ, P i).
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4.5.2 Collisionless Boltzmann equation in relativistic cosmology

When we couple Eq. (4.95) with FLRW metric, we must take into account that f

cannot depend on the position xi, because of homogeneity and isotropy. The collisionless

Boltzmann equation thus becomes:

P 0∂f

∂t
− Γi

νρP
νP ρ ∂f

∂P i
= 0 . (4.96)

Considering the spatially flat case K = 0, the above equation (4.96) can be cast as follows:

∂f

∂t
− 2HP i ∂f

∂P i
= 0 . (4.97)

Again, because of isotropy, f cannot depend on the direction of P i, but only on its modulus

P 2 = δijP
iP j. For a generic function f = f(x2), we have:

xi ∂f

∂xi
= x

∂f

∂x
, (4.98)

with x2 ≡ δijx
ixj. Therefore, we can write

∂f

∂t
− 2HP

∂f

∂P
= 0 . (4.99)

We can see that the solution of the above equation is a generic function:

f = f(a2P ) = f(ap) , (4.100)

where in the second equality we have used the definition of the proper momentum. The

Boltzmann equation written using the proper momentum has the following form:

∂f

∂t
−Hp

∂f

∂p
= 0 (4.101)

4.5.3 Moments of the collisionless Boltzmann equation

Taking moments of the Boltzmann equation means to integrate it in the momentum

space, weighed with powers of the proper momentum. This method is due to Grad [72].

For example, the moment zero of Eq. (4.101) is the following:

∫ d3p
(2π~)3

(

∂f

∂t
−Hp

∂f

∂p

)

= 0 . (4.102)
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Using the definition of the particle number density (??), we can see that Eq. (4.102)

becomes:

ṅ+ 3Hn = 0 ⇒ 1

a3

d(na3)

dt
= 0 (4.103)

The particle number na3 is conserved. This is an expected result since we have considered

a collisionless Boltzmann equation, i.e. absence of interactions and thus no source of

creation or destruction of particles. Weighing Eq. (4.101) with the energy and integrating

in the momentum space we get:

ε̇−H
∫ d3p

(2π~)3
pE(p)

∂f

∂p
= 0 . (4.104)

Integrate by parts the above equation and show that it becomes:

ε̇+ 3H (ε+ P ) = 0 , (4.105)

i.e. the continuity equation. Weighing Boltzmann equation (4.101) with p̂i will always

result in an identity, because of isotropy. We can show this as follows:

∫ d3p
(2π~)3

p̂i

(

∂f

∂t
−Hp

∂f

∂p

)

=
∫

d2p̂ p̂i
∫ dp p2

(2π~)3

(

∂f

∂t
−Hp

∂f

∂p

)

= 0 . (4.106)

Since f = f(ap) then only the integration in p contains f and the angular integration is

just a multiplicative factor, then, we can see that:

∫

d2p̂ p̂i = 0 , (4.107)

and thus Eq. (4.106) is an identity.

4.6. Big-Bang Nucleosynthesis

The BBN is the formation of the primordial light elements, mainly helium. It took

place at a temperature (photon temperature) of about 0.1 MeV, which corresponds to

a redshift z ≈ 109. In order to investigate the BBN, we need to know the characters of

the story. At temperatures say larger than 1 MeV the primordial plasma was formed by

photons, electrons, positrons, neutrinos, antineutrinos, protons and neutrons. We have

already seen how photons, electrons, positrons, neutrinos, antineutrinos interact among

each other, so now we focus on protons and neutrons. Their interactions relevant to BBN

are the following:
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n ↔ p+ e− + ν̄e (beta decay) , (4.108)

p+ e− ↔ νe + n (electron capture) , (4.109)

p+ ν̄e ↔ e+ + n (inverse beta decay) . (4.110)

As we have seen, at a temperature of about 1 MeV neutrinos decouple. Therefore, the

β-decay reaction in Eq. (4.108) (from left to right) takes over and the number of neutrons

starts to diminish. On the other hand, they can also be captured by protons and form

deuterium nuclei. The BBN is essentially a competition in capturing neutrons before they

decay.

4.6.1 The baryon-to-photon ratio

A very important number for BBN and cosmology is the baryon-to-photon ratio

ηb, which we have already encountered at the beginning of this chapter. It is defined as

follows:

ηb ≡ nb

nγ

= 5.5 × 10−10

(

Ωb0h
2

0.020

)

(4.111)

i.e. as the ratio between the number of baryons and the number of photons. We have

defined it via number densities, which individually are time-dependent quantities but

whose ratio is fixed since both scales as 1/a3. The above numbers in Eq. (4.111) can be

found as follows:

ηb =
nb

nγ

=
εb0

mbc2nγ0

, (4.112)

where we have assumed the baryons to be nonrelativistic, which is indeed the case at the

temperatures we are dealing with (kBT ∼ MeV) since the proton mass is of the order of 1

GeV. Using Eq. (4.39) and Eq. (4.44), we can write

nγ0

εγ0

=
30ζ(3)

π2kBT0

. (4.113)

Therefore,

ηb =
π4kBT0εb0

30ζ(3)mbc2εγ0

=
π4kBT0Ωb0

30ζ(3)mbc2Ωγ0

, (4.114)

where in the last equality we have multiplied and divided by the present critical energy

density in order for the density parameters to appear. The fact that there is a billion
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photon for each proton and electron is very important for the following reason. Even if

the temperature of the thermal bath is lower than the binding energy of deuterium, i.e.

2.2 MeV, there are still many photons with energy higher than 2.2 MeV which are able

to break newly formed deuterium nuclei. This is also known as deuterium bottleneck. As

Kolb and Turner comment in their book [92, page 92], it is not deuterium’s fault if BBN

takes place at temperature much smaller than 2.2 MeV. Rather, the very high entropy of

the universe, i.e. the smallness of ηb, is the culprit.

4.6.2 The deuterium bottleneck

The deuterium bottleneck is the situation in which newly formed deuterium nuclei

are destroyed by photons. With no deuterium available, BBN cannot take place. Let us

start considering the reaction:

p+ n ↔ D + γ , (4.115)

at chemical equilibrium. Using Saha equation (??), we have

nDnγ

n
(0)
D n

(0)
γ

=
npnn

n
(0)
p n

(0)
n

. (4.116)

Neglecting the photon chemical potential, i.e. nγ = n(0)
γ , and using Eq. (??) we obtain:

nD

npnn

=
n

(0)
D

n
(0)
p n

(0)
n

=
gD

gpgn

(

2π~2mD

mpmnkBT

)3/2

e−(mD−mp−mn)c2/(kBT ) . (4.117)

The deuterium has spin 1, whereas protons and neutrons have spin 1/2. Therefore,

nD

npnn

=
3

4

(

2π~2mD

mpmnkBT

)3/2

eBD/(kBT ) , (4.118)

where BD = 2.22 MeV is the deuterium binding energy. We can write the masses ratio as

follows:

mD

mpmn

=
mp +mn −BD/c

2

mpmn

=
1

mn

+
1

mp

− BD

mpmnc2
. (4.119)

Introducing the neutron-proton mass difference [203]:

Q ≡ (mn −mp)c2 = 1.239 MeV , (4.120)
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we can write

mD

mpmn

=
1

mp(1 +Q/mpc2)
+

1

mp

− BD

m2
p(1 +Q/mpc2)c2

. (4.121)

Since Q/mpc
2 ∼ BD/mpc

2 ∼ 10−3, we approximate:

mD

mpmn

≈ 2

mp

. (4.122)

Moreover, being nn = np = nb, we can write:

nD

nb

=
3

4
nb

(

4π~2

mpkBT

)3/2

eBD/(kBT ) , (4.123)

i.e. we obtain a deuterium-to-baryon ratio which defines how many baryons exist that are

deuterium nuclei. Dealing with the nb on the right hand side as follows:

nb = ηbnγ = ηbn
(0)
γ = 2ηb

(kBT )3

π2~3c3
, (4.124)

where we have used Eq. (??) for the photon number density, we get

nD

nb

=
12√
π
ηb

(

kBT

mpc2

)3/2

eBD/(kBT ) . (4.125)

As long as kBT ≫ BD the relative deuterium abundance is completely negligible since

it is exponentially suppressed. However, even when kBT ∼ BD the relative abundance

is very small, because of the prefactor ηb. This is the deuterium bottleneck. Typically,

the temperature TBBN at which the BBN starts is the one at which the bottleneck is

overcome. This is because, as numerical calculations show, once deuterium is formed it

rapidly combines into Helium. So, we define TBBN as the one for which nD = nb:

log

(

12√
π
ηb

)

+
3

2
log

(

kBTBBN

mpc2

)

= − BD

kBTBBN

. (4.126)

Numerically solving this equation, one finds

kBTBBN ≈ 0.07 MeV (4.127)

Note that we can use Saha equation only until chemical equilibrium holds true. When

the reaction p + n ↔ D + γ unbalances and deuterium is formed, we must use the full

Boltzmann equation (??). However, it can be shown numerically that the two equations

provide compatible results up to the moment in which the equilibrium is broken. Therefore,
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Saha equation is an useful tool for estimating when the equilibrium is broken but, of

course, if one needs precise results one should solve the full Boltzmann equation.

4.6.3 Neutron abundance

After the deuterium bottleneck is overcome, BBN takes place in the following chain

reactions:

p+ n → D + γ , (4.128)

D +D → 3He + n , (4.129)

D + 3He → 4He + p . (4.130)

In the following, we shall assume that the three above reactions take place instantaneously

and the neutrons are captured in Helium nuclei. This is not what occurred, of course,

but it turns out to be a good approximation which allows us to perform easy calculations.

Note that Lithium 3Li is also produced, but in tiny fraction (one billionth of the hydrogen

abundance). However, measuring its abundance in the universe is a very important

independent measure of Ωb0. The main prediction of BBN is on the abundance of 4He

because this is the element which is mostly formed, due to both its high binding energy

per nucleon, which is about 7 MeV, see Fig. 13, but also to the fact that there is not much

time for forming heavier nuclei since the thermal bath is rapidly cooling and ηb is so small.

Our objective is thus to determine the neutron abundance at TBBN. This is done considering

two reactions. The electron capture:

p+ e− ↔ n+ ν , (4.131)

and the β-decay:

n ↔ p+ e− + ν̄ . (4.132)

The β-decay will provide just an exponential suppression on the abundance predicted by

the the electron capture. Therefore, we focus on the latter. For temperature kBT ≫ 1

MeV, protons and neutrons are in chemical equilibrium:

np

nn

=
n(0)

p

n
(0)
n

=
(

mp

mn

)3/2

e(mn−mp)c2/(kBT ) ∼ eQ/(kBT ) , (4.133)

where Q = 1.239 MeV, see Eq. (4.120). When kBT ≫ Q, the mass difference between

protons and neutrons is irrelevant, and therefore they are in chemical equilibrium. When

kBT drops below Q nature starts to favor protons because they are energetically more
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Figure 13 – Binding energy per nucleon. Figure taken from https://phys.libretexts.

org/Bookshelves/University_Physics/.

“economic” and neutrons start to disappear. However, as we mentioned earlier, out of

equilibrium we cannot use Saha equation but have to solve the full Boltzmann equation:

1

a3

d(nna
3)

dt
= n(0)

n n
(0)
l 〈σv〉

(

npnl

n
(0)
p n

(0)
l

− nnnl

n
(0)
n n

(0)
l

)

, (4.134)

where we have denoted with the subscript l the leptons, either electron or neutrino,

involved in the electron capture process. We assume their chemical potentials to be zero

and simplify Eq. (4.134) as follows:

1

a3

d(nna
3)

dt
= n

(0)
l 〈σv〉

(

npn
(0)
n

n
(0)
p

− nn

)

. (4.135)

Let us define the neutron abundance and the scattering rate as follows:

Xn ≡ nn

nn + np

, n
(0)
l 〈σv〉 ≡ λnp . (4.136)
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Note that Eq. (4.135) can be cast, using Eq. (4.136), as follows:

dXn

dt
= λnp

[

(1 −Xn)e−Q/(kBT ) −Xn

]

. (4.137)

In order to solve (numerically) Eq. (4.137), we introduce the variable:

x ≡ Q

kBT
. (4.138)

The time derivative of x ≡ Q/(kBT ) can be cast as follows:

dx

dt
= Hx = x

√

8πGε

3c2
. (4.139)

Since we are deep in the radiation-dominated era, we can write the energy density of

Eq. (4.139) as follows:

ε =
π2(kBT )4

30(~c)3
g∗ (4.140)

where the effective number of relativistic degrees of freedom is

g∗ ≡
∑

i=bosons

gi +
7

8

∑

i=fermions

gi , (4.141)

where recall the 7/8 factor coming from Eq. (4.47). The effective number of relativistic

degrees of freedom is actually a function of the temperature, since it decreases when a

certain species becomes non-relativistic. For temperature larger than 1 MeV g∗ is roughly

a constant and its value is:

g∗ = 2 +
7

8
(3 + 3 + 2 + 2) = 10.75 , (4.142)

where we have considered two degrees of freedom coming from the photons, 3 + 3 coming

from neutrinos and anti-neutrinos and 2 + 2 coming from electrons and positrons. We

have considered just a single spin state for each neutrino and anti-neutrino. The Hubble

parameter can thus be cast in the following form:

H2 =
8πG

3c2

π2(kBT )4

30(~c)3
g∗ =

4π3Gg∗Q4

45c2(~c)3

1

x4
, (4.143)

where H(x = 1) = 1.13s−1 and the Eq. (4.137) can be cast as:

dXn

dx
=

xλnp

H(x = 1)

[

e−x −Xn(1 + e−x)
]

. (4.144)
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We only need a last piece of information, i.e. the interaction rate λnp:

λnp =
255

τnx5
(12 + 6x+ x2) , (4.145)

where τn = 886.7s, is the neutron lifetime. The above scattering rate can be found in [26].

We can now solve numerically Eq. (4.144) together with Eq. (4.145). The initial condition

on Xn is of course Xn(x → 0) = 1/2, as we can see from the Saha equation (4.133). We

plot the evolution of Xn in Fig. 14.

Figure 14 – Evolution of Xn from Eq. (4.144).

As we can appreciate from Fig. 14, Xn → 0.15 as x → ∞. This number is not a very

good approximation of the residual abundance of neutrons at TBBN because there are

other relevant processes which contribute to deplete or enhance the number of neutrons.

Namely:

n → p+ e− + ν̄ , (4.146)

n+ p → D + γ , (4.147)

i.e. the β-decay and the neutron-proton capture. These processes lower the number of
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free neutrons. The Helium-3 formation:

D +D → 3He + n , (4.148)

puts back into play another neutron and the Helium-4 formation:

3He +D → 4He + p , (4.149)

reinserts into play another proton, which helps in capturing neutrons, thus lowering their

number. The right way to calculate the abundances of the light elements produced during

BBN is to consider all the coupled Boltzmann equations for all the relevant reactions

taking place. This is, of course, done numerically and the standard code is Wagoner’s

one [188] (there has been refinements since then). We now show that correcting Xn = 0.15

by taking into account only the β-decay gives a result which is in surprising agreement

with the more reliable one which takes into account all the reactions. What we have to

do is to weigh Xn = 0.15 with exp(−tBBN/τn),3 where tBBN is the time corresponding to

kBTBBN = 0.07 MeV, i.e. the time at which BBN starts. Moreover, we suppose that at

this time all the free neutrons are immediately captured and produce Helium-4. Thereby,

estimating Xn gives a direct estimation of X4He. At kBTBBN = 0.07 MeV, electrons and

positrons have already annihilated. Therefore, the effective relativistic degrees of freedom

are:

g∗ = 2 +
7

8

(

4

11

)4/3

6 ≈ 3.36 , (4.150)

where we have taken into account the temperature difference between photons and neutrinos.

Since T ∝ 1/a and in the radiation-dominated epoch a ∝
√
t, we can relate time and

temperature as follows:

1

4t2
= H2 =

4π3G(kBT )4

45c2(~c)3
g∗ , (4.151)

and from the Eq. (4.151), we obtain:

t = 271

(

0.07 MeV

kBT

)2

s . (4.152)

Therefore, the expected abundance of neutrons at kBTBBN = 0.07 MeV is:

Xn(TBBN) = 0.15 · e−271/886.7 ≈ 0.11 . (4.153)

3 This exponential weight comes from Poisson distribution, which governs stochastic processes
such as the β-decay.
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Assuming that all the neutrons end up in Helium-4 nuclei, we have the prediction:

YP ≡ 4X4He ≡ 4n4He

nb

= 2Xn(TBBN) = 0.22 . (4.154)

The factor 4 comes from the fact that YP is a mass fraction and each Helium-4 nucleus

contains 4 baryons. We have also assumed mb = mp = mn. The more accurate numerical

result is [92]:

YP = 0.2262 + 0.0135 log
(

ηb

10−10

)

, (4.155)

which is in very good agreement with our “back-of-the-envelope” calculation. In Fig. 15

the time-evolution plots of the mass fractions of various elements are displayed.
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Figure 15 – Time-evolution of the mass fraction of various elements. Figure taken from
http://cococubed.asu.edu/images/net_bigbang/bigbang_time_2010.pdf.

4.7. Recombination and decoupling

Recombination is the process by which neutral hydrogen is formed via combination
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of protons and electrons. Decoupling is generally refered to be the epoch when photons

stop to interact with free electrons and their mean free path becomes larger than the

Hubble radius and we are able to detect them as CMB coming from the last scattering

surface. For the two events, the relevant interactions are:

p+ e− ↔ H + γ , (4.156)

e− + γ ↔ e− + γ (Compton/Thomson scattering) . (4.157)

Recombination and decoupling temporally occur close to each other for the following

reason. At sufficiently low temperatures, which we will calculate, photons are no more

able to break hydrogen atoms and so these start to form in larger number (recombination).

Being captured in hydrogen atoms, the number of free electrons dramatically drops and the

Thomson scattering rate goes to zero (decoupling). The seminal paper on recombination

is [139]. In order to determine the epoch of recombination, let us use again Saha equation:

nenp

nH

=
n(0)

e n(0)
p

n
(0)
H

. (4.158)

Let us assume neutrality of the universe, i.e. ne = np and define the free electron fraction:

Xe ≡ ne

ne + nH

=
np

np + nH

, (4.159)

If we consider that the degeneracy of the hydrogen atom, in the state 1s, is g1s = 4 (it has

two hyperfine states, one of spin 0 and the other of spin 1), then Saha equation can be

written (using Eq. (??)), as:

X2
e

1 −Xe

=
1

ne + nH

(

mempkBT

2mHπ~2

)3/2

e−(me+mp−mH)c2/(kBT ) . (4.160)

Consider the contribution at the denominator of the right hand side as:

ne + nH = nb = ηbnγ = ηb
2ζ(3)

π2~3c3
(kBT )3 ≈ 10−9 (kBT )3

~3c3
. (4.161)

Look at the first equality as follows: the total electron number is made up of those

which are free plus those which have already been captured. Moreover, the total electron

number density is the same as the baryon number density because electrons are baryons
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(in the jargon of cosmology). We again neglect the mass difference elsewhere than at the

exponential, and write:

X2
e

1 −Xe

≈ 109

(

mec
2

2πkBT

)3/2

exp

(

−13.6 eV

kBT

)

, (4.162)

where we used

ε0 ≡ (me +mp −mH)c2 = 13.6 eV , (4.163)

i.e. the ionisation energy of the hydrogen atom. The high photon-to-baryon number

delays recombination as well as it delayed BBN. Indeed, when kBT = 13.6 eV, we get from

Eq. (4.162):

X2
e

1 −Xe

≈ 1015 , (4.164)

From which one gets that Xe ≈ 1. This means that even when the energy of the thermal

bath drops below the ionisation energy of the hydrogen atom, still no hydrogen is formed

and the electrons remain free. This, again, happens because there are still many photons

with energy much higher than 13.6 eV. As we already mentioned, Saha equation works

until chemical equilibrium is maintained. In Tab. 5 we show numerical calculations of Xe

from Eq. (4.162) in order to have a hint about the time of recombination.

kBT [eV] Xe

0.5 1
0.38 0.995
0.36 0.970
0.34 0.819
0.32 0.434
0.30 0.137
0.29 0.067
0.25 0.001

Table 5 – Free electron fraction at different photon temperatures.

From Tab. 5 we see that the free electron fraction falls abruptly at about kBT ≈ 0.30 eV.

In Fig. 16 we numerically solve Saha equation (4.162) and use both kBT and the

redshift as variables.

In order to accurately calculate Xe, we need to use the full Boltzmann equation (??),

which for recombination becomes:

1

a3

d(nea
3)

dt
= n(0)

e n(0)
p 〈σv〉

(

nHnγ

n
(0)
H n

(0)
γ

− nenp

n
(0)
e n

(0)
p

)

. (4.165)
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Figure 16 – Numerical solution of the Saha equation (4.162).

We assume nγ = n(0)
γ and ne = np again. Therefore,

1

a3

d(nea
3)

dt
= 〈σv〉



nH

(

mekBT

2π~2

)3/2

e−ε0/(kBT ) − n2
e



 . (4.166)

Introducing now the free electron fraction Xe defined in Eq. (4.159), we get:

dXe

dt
= 〈σv〉



(1 −Xe)

(

mekBT

2π~2

)3/2

e−ε0/(kBT ) −X2
enb



 . (4.167)

As we did for BBN in Eq. (4.124), we can replace nb with:

nb = 2ηb
(kBT )3

π2~3c3
. (4.168)

Now we need the fundamental physics of the capture process. It is given by:

〈σv〉 ≡ α(2) = 9.78 α2 ~
2

m2
ec

(

ε0

kBT

)1/2

log
(

ε0

kBT

)

, (4.169)
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where α = 1/137 is the fine structure constant. The superscript (2) serves to indicate that

the best way to form hydrogen is not via the capture of an electron in the 1s state, because

this generates a 13.6 eV photon which ionises another newly formed H. The efficient way

to form hydrogen is to form it in a excited state. When it relaxes to the ground state, the

photons emitted have not enough energy to ionise other hydrogen atoms. For example, an

electron captured in the n = 2 state generates a 3.4 eV photon. Subsequently, when the

electron falls in the ground state, the hydrogen releases another 10.2 eV photon. Neither

of the two photons has sufficient energy for ionising another hydrogen atom in the ground

state. We now solve numerically Eq. (4.167) together with Eq. (4.124) and Eq. (4.169).

We use the redshift as independent variable:

dXe

dt
=
dXe

dz

dz

dt
= −dXe

dz
H(1 + z) , (4.170)

and the following Hubble parameter:

H2

H2
0

= Ωm0(1 + z)3 + Ωr0(1 + z)4 + ΩΛ , (4.171)

where for z ≈ 1100 is the matter contribution the dominant one. Therefore, we rewrite

Eq. (4.167) as follows:

dXe

dz
= − 〈σv〉

H(1 + z)



(1 −Xe)

(

mekBT

2π~2

)3/2

e−ε0/(kBT ) −X2
enb



 , (4.172)

also taking into account that the photon temperature T scales as:

T = T0(1 + z) , (4.173)

with T0 = 2.725 K.

In Fig. 17 we show the numerical solution of the Boltzmann equation (4.172), compared

with the solution of the Saha equation (4.162). Note how the two solutions are compatible

for high redshifts, but that of the Boltzmann equation predicts a residual free electron

fraction of about Xe ≈ 10−3. At the same time of recombination the decoupling of photons

from electron takes place. As we anticipated, this happens because very few free electrons

remain after hydrogen formation and therefore photons are free to propagate undisturbed

and seen by us as the CMB.

Decoupling

As we have already mentioned at the beginning of this chapter, roughly speaking

in the expanding universe any kind of reaction stops occurring when its interaction rate Γ
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Figure 17 – Solid line: numerical solution of the Boltzmann equation (4.172). Dashed line:
solution of the Saha equation (4.162).

becomes of the order of H. In the case of photons and electrons, the relevant process is

Thomson scattering, for which:

ΓT = neσTc = XenbσTc , (4.174)

where ne is the free-electron number density, which we have written as Xenb because we

have neglected the Helium abundance. The baryon number density can be expressed as

nb =
ρb

mb

=
3H2

0 Ωb0

8πGmpa3
, (4.175)

where we have identified mb = mp since it is the proton mass that dominates the baryon

energy density. We can see that:

ΓT

H
=
neσTc

H
= 0.0692 h

XeΩb0H0

Ha3
. (4.176)

As for H, we consider a matter plus radiation universe, for which:

H2 = H2
0

Ωm0

a3

(

1 +
aeq

a

)

. (4.177)
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Using the above Hubble parameter we obtain:

ΓT

H
= 113Xe

(

Ωb0h
2

0.02

)

(

0.15

Ωm0h2

)1/2 (1 + z

1000

)3/2 (

1 +
1 + z

3600

0.15

Ωm0h2

)−1/2

. (4.178)

The decoupling redshift zdec is defined to be that for which ΓT = H. Note that in the

above equation Xe is a function of the redshift, which we have plotted in Fig. 17. On

the other hand, Xe drops abruptly during recombination, so that the factor 113 is easily

overcome. For this reason recombination and decoupling take place at roughly the same

time.

Figure 18 – Solid line: numerical solution of the ratio ΓT/H of Eq. (4.178). Dashed line:
numerical solution of Eq. (4.172) for Xe.

Now imagine that no recombination takes place, i.e. Xe = 1. The above equation then

gives the decoupling redshift:

1 + zdec = 43
(

0.02

Ωb0h2

)2/3
(

Ωm0h
2

0.15

)1/3

. (4.179)

This is the freeze-out redshift of the electrons, i.e. eventually photons and electrons do

not interact anymore because they are too diluted by the cosmological expansion. This

would happen for a redshift 42. This number is important because of the following. Well
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after decoupling, ultraviolet light emitted by stars and gas is able to ionise again hydrogen

atoms. This phase is called reionisation. If the latter ocurred for redshifts smaller than

42, the newly freed electron would not interact with photons because they are too much

diluted by the cosmological expansion. Indeed, reionization takes place for zreion ≈ 10, so

that the CMB spectrum is poorly affected.
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Chapter 5

Neutrinos in the CMB epoch

Long the realm of armchair philosophers, the study of the origins and evolu-

tion of the universe became a physical science with falsifiable theories

—Wayne Hu, PhD Thesis

In this Chapter we attack the hierarchy of Boltzmann equations that we have

found for photons and present an approximate, semi-analytic solution which will allow

us to understand the temperature correlation in the CMB sky and its relation with

the cosmological parameters. Our scope is to understand the features of the angular,

temperature-temperature power spectrum in Fig. 19. Note that in this plot the definition

DT T
ℓ ≡ ℓ(ℓ+ 1)CT T,ℓ

2π
, (5.1)

is used. We shall see the reason for the ℓ(ℓ+1) normalisation, whereas the CT T,ℓ’s are given

as functions of the multipole moments of the temperature distribution and the primordial

power spectrum for scalar perturbations. In Fig. 19 we can also see data points up to

ℓ ≈ 2500. What can we say from this number about the angular sensitivity of Planck? It

can be roughly computed as follows. For a given ℓmax how many realisations of aℓm do we

have?. For each ℓ we have 2ℓ+ 1 possible values of m, thus that:

Nℓmax
=

ℓmax
∑

ℓ=0

(2ℓ+ 1) = (ℓmax + 1)2 . (5.2)

The full sky has:

4π rad2 =
4

π
(180 deg)2 ≈ 41000 deg2 . (5.3)
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If an experiment has sensitivity of 7 deg, then we can have at most

4

π
(180/7)2 ≈ 842 , (5.4)

pieces of independent information and therefore we can determine as many aℓm. This gives

ℓmax ≈ 28 and it was the sensitivity of CoBE. For Planck, the angular sensitivity was of 5

arcmin, which corresponds to

4

π
(180 × 60/5)2 ≈ 106 , (5.5)

pieces of independent information and then to ℓmax = 2436. In this Chapter we omit

the superscript S referring to the scalar perturbations contribution to Θ, since most of

the time we shall discuss of it. We shall only use T in order to distinguish the tensor

contribution.

Figure 19 – CMB TT power spectrum. The green solid line is the best fit ΛCDM model
and the data (red points) are from Planck.

5.1. Free-streaming

It is convenient to start neglecting the collisional term in the Boltzmann equa-

tion and considering thus the phase of photon free-streaming. We can write for scalar
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perturbations:

(

∂

∂η
+
dxi

dη

∂

∂xi

)

(Θ + Ψ) = Ψ′ − Φ′ . (5.6)

As we know from Boltzmann equation, the differential operator on the left hand side is a

convective derivative, i.e. a derivative along the photon path:

d

dη
(Θ + Ψ) = Ψ′ − Φ′ , (5.7)

whose inversion is the basis of the line-of-sight integration approach to CMB anisotropies

[166], which is an alternative to attacking the hierarchy of coupled Boltzmann equations

(which still must be attacked but can be truncated at much lower ℓ’s) as it was done e.g.

in [113]. For time-independent potentials, as they are in the matter-dominated epoch,

the collisionless Boltzmann equation for photons tells us that Θ + Ψ is constant along

the photons paths, i.e. along our past light-cone, since recombination. Recall that the

scalar-perturbed metric that we are using is given by:

ds2 = −a2(η)(1 + 2Ψ)dη2 + a2(η)(1 + 2Φ)δijdx
idxj . (5.8)

Inside a potential well, Ψ is negative. In order to be convinced of this one has just to think

about the Newtonian limit and realise that 2Ψ is the Newtonian gravitational potential,

hence negative. So, since Θ + Ψ stays constant, we have that:

Θ(η∗,x∗, p̂) + Ψ(η∗,x∗) = Θ(η0,x0, p̂) + Ψ(η0,x0) . (5.9)

where on the left hand side we have chosen the quantities at recombination whereas on the

right hand side we have chosen the present time. Note that x0, is where our laboratory

(the CMB experiment) is, i.e. Earth, and as such is fixed. Therefore, since we can only

detect photons on our past light-cone, and those from CMB comes from a fixed comoving

distance r∗ = η0 − η∗, we have that:

x∗ = x0 − r∗p̂ . (5.10)

Note that p̂ is the photon direction and so it is opposite to the direction of the line of sight

n̂ = −p̂. So, the only independent variables are 2, the components of p̂. They become just

a single one, µ, because of the way in which we factorise the azimuthal dependence (and

assuming axial symmetry). The potential Ψ(η0,x0) is usually neglected, or incorporated
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in the potential at recombination, since it is not detectable. As it is well known, classically

only potential differences are physically meaningful. The above equation then tells us that:

Θ(η∗,x0 − r∗p̂, p̂) + Ψ(η∗,x0 − r∗p̂) = Θ(η0,x0, p̂) , (5.11)

i.e. the observed temperature fluctuation (on the right hand side) accounts for the energy

loss due to climbing out the potential well or falling down a potential hill. This is the

so-called Sachs-Wolfe effect [157]. Writing the above equation in Fourier modes, we

have:

∫ d3k
(2π)3

Θ(η0,k, p̂)eik·x0 =
∫ d3k

(2π)3
[Θ(η∗,k, p̂) + Ψ(η∗,k)] eik·(x0−r∗p̂) . (5.12)

We can set now x0 = 0, without losing of generality, and manifest the dependences as k

and µ, the former since we normalise to the scalar primordial mode α(k), and the latter

since we are considering axisymmetric scalar perturbations. Hence we have for the Fourier

modes:

Θ(η0, k, µ) = [Θ(η∗, k, µ) + Ψ(η∗, k)] e−ikµr∗ . (5.13)

Using the partial wave expansion, we get:

Θℓ(η0, k) =
1

(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ) [Θ(η∗, k, µ) + Ψ(η∗, k)] e−ikµr∗ , (5.14)

and using the relation:

∫ 1

−1

dµ

2
Pℓ(µ)e−ikµr∗ = (−i)ℓjℓ (kr∗) , (5.15)

we can write:

Θℓ(η0, k) = Ψ(η∗, k)jℓ(kr∗) +
1

(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ)Θ(η∗, k, µ)e−ikµr∗ . (5.16)

Using again the partial wave expansion, we can write the above formula as:

Θℓ(η0, k) = Ψ(η∗, k)jℓ(kr∗)

+
1

(−i)ℓ

∑

ℓ′

(−i)ℓ′

(2ℓ′ + 1)Θℓ′(η∗, k)
∫ 1

−1

dµ

2
Pℓ(µ)Pℓ′(µ)e−ikµr∗ . (5.17)
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We shall see later that, because of tight-coupling, the monopole and the dipole contribute

the most at recombination. Hence, we can write, truncating the summation at ℓ′ = 1:

Θℓ(η0, k) = (Θ0 + Ψ) (η∗, k)jℓ(kr∗) +
3Θ1(η∗, k)

(−i)ℓ−1

∫ 1

−1

dµ

2
Pℓ(µ)µe−ikµr∗ . (5.18)

The integral can be performed as follows:
∫ 1

−1

dµ

2
Pℓ(µ)µe−ikµr∗ = i

d

d(kr∗)

∫ 1

−1

dµ

2
Pℓ(µ)e−ikµr∗ =

1

iℓ−1

d

d(kr∗)
jℓ (kr∗) . (5.19)

The same technique can be used, in principle, to calculate the integral for any ℓ′: for

each power of µ one gains a derivative of the spherical Bessel function. Recalling the

formula [11]:

djℓ(x)

dx
= jℓ−1(x) − ℓ+ 1

x
jℓ(x) , (5.20)

we can write:

Θℓ(η0, k) = (Θ0 + Ψ) (η∗, k)jℓ(kr∗)

+3Θ1(η∗, k)

[

jℓ−1(kr∗) − ℓ+ 1

kr∗
jℓ(kr∗)

]

. (5.21)

So, the spherical Bessel functions start to appear. We have obtained the above free-

streaming solution neglecting the potentials derivatives in Eq. (5.7). Taking them into

account is not difficult, since an additional piece containing the integration of the potential

derivatives would appear in Eq. (5.13):

Θ(η0, k, µ) = [Θ(η∗, k, µ) + Ψ(η∗, k)] e−ikµr∗ +
∫ η0

η∗

dη (Ψ′ − Φ′)(η, k)e−ikµ(η0−η) . (5.22)

The exponential factor in the integral comes from the Fourier transform of the potentials

and from considering:

x = x0 − (η0 − η)p̂ , (5.23)

at any given time η along the photon trajectory (this is the “line of sight”, in practice).

Performing again the expansion in partial waves, we get:

Θℓ(η0, k) = (Θ0 + Ψ) (η∗, k)jℓ(kr∗)

+3Θ1(η∗, k)

[

jℓ−1(kr∗) − ℓ+ 1

kr∗
jℓ(kr∗)

]

+
∫ η0

η∗

dη [Ψ′(η, k) − Φ′(η, k)]jℓ(kr) , (5.24)
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where

r ≡ η0 − η . (5.25)

As we are going to see, the first two terms of the above formula contains the primary

anisotropies of the CMB, which are the acoustic oscillations and the Doppler effect. The

Ψ(η∗, k) contribution in the first term is, as we have already anticipated, the Sachs-Wolfe

effect. The last term is the Integrated Sachs-Wolfe (ISW) effect [157] and contributes

only when the gravitational potentials are time-varying. This happens, when radiation

and DE are relevant. For this reason the ISW effect is usually separated in the early-times

one, due to a small presence of radiation still at decoupling, and in the late-times one,

due to DE. Once we know all the contributions of the above formula, we can provide

the prediction on the CS
T T,ℓ spectrum. The presence of the spherical Bessel function is

interesting for two reasons, which we display in Fig. 20 for the arbitrary choice ℓ = 10.

Figure 20 – Evolution of the spherical Bessel function j2
10(x).

We have chosen to plot the squared spherical Bessel function because it is the

relevant window function when computing the Cℓ’s, as we shall see briefly. First, the

maximum value is attained roughly when x ≈ ℓ and for x < ℓ the spherical Bessel function

is practically vanishing. Therefore, for a given multipole ℓ the scale which contribute most
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for the observed anisotropy is:

k ≈ ℓ

η0 − η∗
. (5.26)

The second reason of interest is that the spherical Bessel function goes to zero for large x.

This means that scales such that kr∗ ≫ 1 do not contribute to the observed anisotropy.

Physically, this is an effect due to the free-streaming phase for which, on very small scales,

hot and cold photons mix up destroying thus the anisotropy. We have thus seen that the

predicted anisotropy today is given by formula Eq. (5.24). We have now to justify the fact

of considering only the monopole and the dipole at recombination. We shall commence in

the next section discussing very large scales. In principle, Eq. (5.24) has the very same

form for neutrinos, but with an initial conformal time ηi which is well anterior to η∗, since

neutrinos do not interact and therefore they only free-stream (at least for temperatures of

the primordial plasma below 1 MeV).

5.2. Anisotropies on large scales

On large scales, i.e. kη ≪ 1, the relevant equations are:

δ′
γ = −4Φ′ , δ′

ν = −4Φ′ , δ′
c = −3Φ′ , δ′

b = −3Φ′ , (5.27)

i.e. only the monopoles are relevant. Since we want to describe CMB, let us focus on the

photon density contrast, which can be written as:

δγ(k, η) = 4Θ0(k, η) , (5.28)

introducing the monopole of the temperature fluctuation. The equation Θ′
0 = −Φ′ can be

immediately integrated, obtaining:

Θ0(k, η) = −Φ(k, η) + Cγ(k) . (5.29)

For the adiabatic primordial mode, the only which we are going to consider is Cγ(k) =

ΦP(k) − ΨP(k)/2, and thus:

Θ0(k, η) = −Φ(k, η) + ΦP(k) − 1

2
ΨP(k) . (5.30)

We can consider the gravitational potentials to be equal in modulus and on large scales

Φ(k, η) is independent of time and since recombination η∗ ≫ ηeq takes place well after
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radiation-matter equality, we know that Φ(k, η∗) = 9ΦP(k)/10, i.e. the value of the

gravitational potential drops of 10% in passing through radiation-matter domination.

Therefore:

Θ0(k, η∗) =
3

5
ΦP(k) =

2

3
Φ(k, η∗) = −2

3
Ψ(k, η∗) . (5.31)

As we saw earlier in Eq. (5.24), the observed anisotropy is not Θ0(k, η∗) but Θ0(k, η∗) +

Ψ(k, η∗), because of the gravitational redshift. Again, this is the Sachs-Wolfe effect,

amounting to a shift in the photons frequency when they decouple from the baryonic

plasma depending whether they are in a well or hill of the gravitational potential. So, we

have from Eq. (5.31) that:

(Θ0 + Ψ)(k, η∗) =
1

3
Ψ(k, η∗) . (5.32)

On the other hand, for δc we know that

δc(k, η) = −3Φ(k, η) +
9ΦP(k)

2
, (5.33)

again assuming adiabatic primordial modes. Using again Φ(k, η∗) = 9ΦP(k)/10, we get:

δc(k, η∗) = 2Φ(k, η∗) = −2Ψ(k, η∗) . (5.34)

The fluctuations in CDM contribute more in generating the potential wells than photons,

a factor 2 against a factor −2/3. Combining the two equations:

(Θ0 + Ψ)(k, η∗) = −δc(k, η∗)

6
(5.35)

This result tells us that on large scales colder spots represent larger overdensities, a

counter-intuitive result. One expects hotter photons the deeper the well is and in fact this

is the case with just Θ0(k, η∗), since we have:

Θ0(k, η∗) = −2

3
Ψ(k, η∗) =

δc(k, η∗)

3
, (5.36)

i.e. the larger the CDM overdensity, the larger the well and Θ0(k, η∗) are. However, photons’

response to the gravitational potential is only a factor −2/3 whereas the gravitational

redshift adds a Ψ contribution, changing thus the sign of the observed anisotropy. In the

limit of δc → −1, one gets (Θ0 + Ψ)(k, η∗) → 1/6, so cosmic voids correspond to hot spots!

The results found here are valid only on large scales, i.e. for kη∗ ≪ 1, scales much larger

than the horizon at recombination, which has an angular size of approximatively 1 degree.
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Moreover, they also depend on the choice of initial conditions. We have opted for the

adiabatic ones, as usual.

Let us use the theoretical prediction on the CS
T T,ℓ, together with the first contribution

only from Eq. (5.24). The latter approximation is justified by the fact that we are

considering large scales, hence the dipole contribution is negligible and the ISW effect is

vanishing because the potentials are constant. Since:

(Θ0 + Ψ)(k, η∗) =
1

3
Ψ(k, η∗) = −1

3
Φ(k, η∗) = − 3

10
ΦP(k) = −1

5
R(k) , (5.37)

the transfer function is just the constant −1/5 (recall that we are neglecting the neutrino

fraction Rν) and thus the angular power spectrum is:

CS
T T,ℓ(SW) =

4π

25

∫ ∞

0

dk

k
∆2

R(k)j2
ℓ (kη0) , (5.38)

since η∗ ≪ η0. Note that kη∗ ≪ kη0 and we have seen in Fig. 20 that the spherical Bessel

function contributes the most about kη0 ≈ ℓ. Thus, for small ℓ, i.e. large angular scales,

kη0 is small and kη∗ is very small, where in fact | (Θ0 + Ψ) (k, η∗)|2 is constant. In other

words, the above approximation is valid for small ℓ, typically ℓ . 30. In the above integral

we can look at j2
ℓ (kη0) as a very peaked window function and approximate it as:

CS
T T,ℓ(SW) ≈ 4π

25
∆2

R(ℓ/η0)
∫ ∞

0

dk

k
j2

ℓ (kη0) . (5.39)

Using the result:

∫ ∞

0

dx

x
j2

ℓ (x) =
1

2ℓ(ℓ+ 1)
, (5.40)

we have then:

ℓ(ℓ+ 1)CS
T T,ℓ(SW)

2π
≈ 1

25
∆2

R(ℓ/η0) . (5.41)

Hence, for a scale-invariant spectrum nS = 1 the combination ℓ(ℓ + 1)CS
T T,ℓ(SW) is

constant and it is called Sachs-Wolfe plateau. This also explains why CMB power

spectra are usually presented with the ℓ(ℓ + 1) normalisation, as in Fig. 19. If nS 6= 1,

then ℓ(ℓ + 1)CS
T T,ℓ(SW) is proportional to ℓnS−1, i.e. the primordial tilt in the power

spectrum leaves its mark in a tilted plateau for small ℓ.
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5.3. Tight-coupling and acoustic oscillations

We have seen that in order to determine the prediction on the present time CT T,ℓ’s

we need to know what happens at recombination. We devote this section to such purpose,

showing that the monopole and the dipole contribute the most. Let us recover here the

hierarchy of Boltzmann equations for the Θℓ’s, not taking into account polarisation:

(2ℓ+ 1)Θ′
ℓ + k[(ℓ+ 1)Θℓ+1 − ℓΘℓ−1] = (2ℓ+ 1)τ ′Θℓ , (ℓ > 2) , (5.42)

10Θ′
2 + 2k (3Θ3 − 2Θ1) = 10τ ′Θ2 − τ ′Π , (5.43)

3Θ′
1 + k(2Θ2 − Θ0) = kΨ + τ ′ (3Θ1 − Vb) , (5.44)

Θ′
0 + kΘ1 = −Φ′ , (5.45)

where recall that δγ = 4Θ0 and 3Θ1 = Vγ . The best way to deal with these equations is to

solve them numerically by using Boltzmann codes such as CAMB or CLASS, but in this

way the physics behind the CT T,ℓ’s remains hidden or unclear. For this reason we attack

these equations in an approximate fashion, but analytically. We take the limit −τ ′ ≫ H,

which is called tight-coupling (TC) approximation. This limit physically means that the

Thomson scattering rate between photons and electrons is much larger than the Hubble

rate until recombination and then drops abruptly since the free electron fraction Xe goes

to zero very rapidly, as we have seen when studying thermal history in Chapter 4. We

shall first consider the case of sudden recombination, where all the photons last scatter

at the same time. It is a fair approximation, though unrealistic. From the definition of

the optical depth:

τ ≡
∫ η0

η
dη′ neσTa , (5.46)

show that τ ∝ 1/η3 when matter dominates and τ ∝ 1/η when radiation dominates. We

can be more quantitative and write:

−τ ′ = neσTa = nbσTa =
ρb

mb

σTa , (5.47)

where we have used the definition of τ and assumed to be in an epoch before recombination,

so that we can approximate ne with nb, since all the electrons are free. Introducing the

baryon density parameter and using mb = 1 GeV, the mass of the proton, show that:

−τ ′ ≈ 1.46 × 10−19 Ωb0h
2

a2
s−1 . (5.48)

Now we need to compare this scattering rate with the Hubble rate, in order to check the

goodness of the TC approximation. Assuming matter-domination and using the conformal
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time Friedmann equation (this because τ ′ is derived with respect to the conformal time),

we have:

H = H0

√

Ωm0a
−1/2 ≈ 3.33 × 10−18h

√

Ωm0 a
−1/2 s−1 . (5.49)

Therefore, the ratio:

−τ ′

H = 0.044
Ωb0h

2

√
Ωm0h2

a−3/2 , (5.50)

diverges for a → 0 as expected (though the formula should be generalised to the case of

radiation-domination), so if it is sufficiently big at recombination then the TC approxima-

tion would be reliable. Substituting the Planck values Ωb0h
2 = 0.022 and Ωm0h

2 = 0.12

one gets at recombination, i.e. for a = 10−3:

−τ ′

H ≈ 102 . (5.51)

This means that the scattering rate is much larger than the Hubble rate even at recom-

bination as long as there are free electrons around and thus we are going to use the

tight-coupling approximation with reliability. Let us see in detail how the TC limit works.

Let us compare in the hierarchy for ℓ ≥ 2 the terms Θ′
ℓ and kΘℓ with τ ′Θℓ, which have all

the same dimensions of inverse time. There are two physical time scales in our problem,

one is given by the expansion rate and the other by the scattering rate, hence

Θ′
ℓ ∝ HΘℓ, τ

′Θℓ , (5.52)

from a dimensional analysis. However, the mode for which Θ′
ℓ ∝ τ ′Θℓ implies that

Θℓ ∝ exp τ and hence diverges at early times, which is unacceptable for a small fluctuation.

We then dismiss this mode as unphysical and take into account just that for which

Θ′
ℓ ∝ HΘℓ, which is small compared to τ ′Θℓ. Now, let us inspect the ratio

−τ ′

k
. (5.53)

This is the number of collisions which take place on a scale 1/k. Hence, this number is

very large, provided that we consider sufficiently large scales, i.e. small k. If the scale is

too small, i.e. large k, then the TC approximation does not work well and we must take

into account the multipole moments for ℓ ≥ 2. We will see this when investigating the

diffusion damping or Silk damping effect. From the above analysis, for sufficiently

large scales we can conclude then that Θℓ ≈ 0 for ℓ ≥ 2. Sufficiently large means much

larger than the mean free path −1/τ ′ which is approximately of the order of 10 Mpc at
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recombination. This number can be computed from Eq. (5.48) and is a comoving scale;

the physical one is divided by a factor a thousand and so it is 10 kpc. Finally, note that

Θℓ ∼ τ ′/kΘℓ−1. Therefore, considering smaller and smaller scales makes necessary to

include higher and higher order multipoles. Eliminating all the multipoles ℓ ≥ 2, the

relevant equations are just the following two:

Θ′
0 + kΘ1 = −Φ′ , (5.54)

3Θ′
1 − kΘ0 = kΨ + τ ′ (3Θ1 − Vb) , (5.55)

i.e. the TC approximation allows us to treat photons as a fluid until recombination. Note

the coupling to baryons via the baryon velocity Vb. Thus, we need also the equations for

baryons:

δ′
b + kVb = −3Φ′ , (5.56)

V ′
b + HVb = kΨ +

τ ′

R
(Vb − 3Θ1) , (5.57)

where we have introduced R ≡ 3ρb/4ργ, i.e. the baryon density to photon density ratio.

This number can be cast as:

R =
3Ωb0

4Ωγ0

a ≈ 600a , (5.58)

using the usual values and it grows from zero at early times to R∗ ≈ 0.6 at recombination.

So it is small, but not that negligible. Let us rewrite the velocity equation for baryons in

the following way:

Vb = 3Θ1 +
R

τ ′ (V ′
b + HVb − kΨ) . (5.59)

We can solve this equation via successive approximation, exploiting the fact that R < 1

before recombination. That is, assume the expansion:

Vb = V
(0)

b +RV
(1)

b +R2V
(2)

b + . . . . (5.60)

The solution for R = 0 simply gives V
(0)

b = 3Θ1, which we have used in order to investigate

the primordial modes. This solution is reliable well before recombination, say at a = 10−7

for example, because R ≈ 6 × 10−5 there, but it is not satisfactory at recombination and

we shall take into account the first order in R in the above expansion.
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5.3.1 The acoustic peaks for R = 0

Let us start with the simple case of R = 0, which amounts to neglect baryons.

Combine the photon Eqs. (5.54)-(5.55) with the zeroth-order TC condition Vb = 3Θ1 and

find the following second-order equation for Θ0:

Θ′′
0 +

k2

3
Θ0 = −k2Ψ

3
− Φ′′ . (5.61)

We have here already the first fundamental piece of physics of the CMB. This is the

equation of motion of a driven harmonic oscillator where instead of the position we have the

monopole of the temperature fluctuation and the driving force is given by the gravitational

potential. This equation describe acoustic oscillations of the baryon-photon fluid until

recombination. After recombination we expect to observe these fluctuations in the CT T,ℓ’s,

using the free-streaming formula (5.24), and in fact we do, cf. Fig. 19. Note that these

oscillations are in the baryon-photon fluid and therefore affect also baryons. We therefore

expect to see oscillations in the baryon distribution after recombination, called baryon

acoustic oscillations (BAO), and detected by Eisenstein and collaborators in 2005 [61].

The BAO are the manifestation of a special length, the sound horizon at recombination,

in the correlation function of galaxies which appears as a bump, i.e. an excess probability.

In the Fourier space, i.e. for the power spectrum, a given scale is represented with various

oscillations. BAO and weak gravitational lensing are among the main observables on

which current and future experiments (such as Euclid and LSST ) are based. Combine

Eqs. (5.56) and (5.57) and the TC condition Vb = 3Θ1 and find the following equation for

δb:

δ′
b = 3Θ′

0 . (5.62)

Hence, the same oscillatory solution of Θ0 holds true for δb. Now, consider the fact that

close to recombination CDM is already dominating and thus the potentials are equal and

constant at all scales. We get:

Θ′′
0 +

k2

3
Θ0 = −k2Ψ

3
. (5.63)

This equation can be put in the following form:

(Θ0 + Ψ)′′ +
k2

3
(Θ0 + Ψ) = 0 , (5.64)
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where we have used the constancy of Ψ. Note how the observed temperature fluctuation,

used in Eq. (5.24), has appeared. The solution is:

(Θ0 + Ψ)(η, k) = A(k) sin

(

kη√
3

)

+B(k) cos

(

kη√
3

)

, (5.65)

with the driving potential, i.e. CDM, providing just an offset for the oscillations. At

recombination we have

(Θ0 + Ψ)(η∗, k) = A(k) sin

(

kη∗√
3

)

+B(k) cos

(

kη∗√
3

)

, (5.66)

with peaks and valleys in the temperature fluctuations given by this combination of sine

and cosine, therefore dependent on the functions A(k) and B(k). Inserting these formula

into Eq. (5.24) in order to compute the Θℓ(η0, k) (the anisotropies today) and to compute

the CT T,ℓ’s, we are able to explain the acoustic oscillations feature of the CMB TT

spectrum, of Fig. 19. The functions A(k) and B(k) are determined by the initial condition,

i.e. for kη∗ ≪ 1:

(Θ0 + Ψ)(kη∗ ≪ 1) ∼ A(k)
kη∗√

3
+B(k) . (5.67)

Hence, if we choose adiabatic modes, we must put A(k) = 0. So, considering different

initial conditions changes the position of the acoustic peaks and observation allows to test

the choice made. As we saw, Planck limits the presence of isocurvature modes to a few

percent. With A(k) = 0, i.e. for adiabatic perturbations, using the large-scale solution

that we found in Eq. (5.37), we have:

(Θ0 + Ψ)(η∗, k) = −1

5
R(k)T (k) cos

(

kη∗√
3

)

, (5.68)

where T (k) is the transfer function of Θ0 + Ψ. It can be shown that it is limited to a range

0.4-2, approximately. See [131]. The extrema of the effective temperature fluctuations are

thus given by:

kη∗√
3

= nπ , (n = 1, 2, . . . ) , (5.69)

where the odd values provide peaks, corresponding to the highest temperature fluctuations

and thus to scales at which photons are maximally compressed and hot, whereas the even

values provide throats, corresponding to the lowest temperature fluctuations and thus to

scales at which photons are maximally rarefied and cold. In the spectrum, cf. Fig. 19, only

peaks appear because of the quadratic nature of the CT T,ℓ’s as functions of the Θℓ’s, but
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it should be clear that the first and the third peaks are compressional. From Eqs. (5.54)

and (5.68), we can determine easily the dipole contribution:

Θ1(η∗, k) = −Θ′
0(η∗, k)

k
= − 1

5
√

3
R(k)T (k) sin

(

kη∗√
3

)

, (5.70)

where we are still continuing in keeping the potentials constant. Substituting this equation

and Eq. (5.68) into Eq. (5.24) in order to compute the angular power spectrum, we get:

CT T,ℓ =
4π

25

∫ ∞

0

dk

k
∆2

R(k)

[

cos

(

kη∗√
3

)

jℓ(kη0) +
√

3 sin

(

kη∗√
3

)

djℓ(kη0)

d(kη0)

]2

, (5.71)

where the derivative of the spherical Bessel function is given in Eq. (5.20). We have

put T (k) = 1 here for simplicity. We can manipulate analytically this integral following

the technique used in [133] and [131]. In these references, baryon loading and diffusion

damping are taken into account but here we just tackle a simpler case. The idea is to

avoid the oscillatory nature of the Bessel function and of the trigonometric ones (which

are also problematic from a numerical perspective) by approximating jℓ(x) as follows, for

large ℓ:

jℓ(x) ≈











0 , (x < ℓ) ,

1√
x(x2−ℓ2)1/4 cos

[√
x2 − ℓ2 − ℓ arccos(ℓ/x) − π/4

]

, (x > ℓ) .
(5.72)

This approximation is identical either for jℓ(x) and for jℓ−1(x), since we are assuming ℓ

to be large. Hence, when we deal with the derivative of the spherical Bessel function in

Eq. (5.71), we can factorise a j2
ℓ (x) and we can approximate the squared cosine coming

from the above approximation with its average, i.e. a factor 1/2. We thus have the

following integration:

CT T,ℓ =
2π∆2

R
25

∫ ∞

ℓ/η0

dk

k2η0

√

(kη0)2 − ℓ2

[

cos

(

kη∗√
3

)

+
√

3

(

1 − ℓ

kη0

)

sin

(

kη∗√
3

)]2

, (5.73)

where we have already assumed a scale-invariant spectrum, for simplicity. Using now the

variable

x ≡ kη0

ℓ
, (5.74)

we can write:

ℓ2CT T,ℓ =
2π∆2

R
25

∫ ∞

1

dx

x2
√
x2 − 1

[

cos (ℓ̺x) +
√

3
x− 1

x
sin (ℓ̺x)

]2

, (5.75)
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where note the appearance of the factor ℓ2 on the left hand side and we have defined the

quantity:

̺ ≡ η∗√
3η0

. (5.76)

Now, developing the square and using the trigonometric formulae:

cos2 α =
1 + cos 2α

2
, sin2 α =

1 − cos 2α

2
, 2 sinα cosα = sin 2α , (5.77)

we can write:

ℓ2CT T,ℓ =
2π∆2

R(k)

25

∫ ∞

1

dx

x2
√
x2 − 1

[

x2 + 3(x− 1)2

2x2
+
x2 − 3(x− 1)2

2x2
cos (2ℓ̺x) +

√
3(x− 1)

x
sin (2ℓ̺x)

]

. (5.78)

Now, let us treat separately the three integrands. The first, non-oscillatory one is simplest

one:

N ≡
∫ ∞

1

dx

x2
√
x2 − 1

x2 + 3(x− 1)2

2x2
= 3

(

1 − π

4

)

, (5.79)

but also the less interesting. The oscillatory ones can be dealt with following [131]. Define:

O1 ≡
∫ ∞

1

dx√
x− 1

x2 − 3(x− 1)2

2x4
√
x+ 1

cos (2ℓ̺x) , (5.80)

then solving the problem in [131, page 383], we can use the formula:

∫ ∞

1

dx√
x− 1

f(x) cos(bx) ≈ f(1)

√

π

b
cos(b+ π/4) , (5.81)

for large values of b and a slowly varying f(x). A similar result holds true also for the sine

function. Using this formula we have then:

O1 =
1

2
√

2

√

π

2ℓ̺
cos(2ℓ̺+ π/4) , (5.82)

whereas for the integral containing the sine:

O2 ≡
∫ ∞

1

dx√
x− 1

√
3(x− 1)

x3
√
x+ 1

sin (2ℓ̺x) ≈ 0 , (5.83)
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since f(1) = 0 here. The contribution O2 comes from the cross product between the

monopole and the dipole terms and it is usually neglected in the calculations. We have

explicitly shown why here. Gathering the N and O1 contributions, we plot the sum

N +O1 in Fig. ??. In order to make this plot, we have used a ∝ η2, since we are in the

matter-dominated epoch, and thus we have evaluated ̺ as follows:

̺ =
η∗√
3η0

=
1

√

3(1 + z∗)
=

1√
3000

≈ 0.0183 . (5.84)

The agreement between the plots of Fig. 19 is poor but at least we have understood

how the acoustic oscillations free-stream until today and are seen in the CMB TT power

spectrum. There are several feature missing in Fig. ??: there are too many peaks, their

relative height diminishes too slowly and the overall trend does not decay as in Fig. 19.

The reason is that we have neglected baryons and diffusion damping, which we are going

to tackle in the next sections.

5.3.2 Baryon loading

The oscillations in Eq. (5.64) take place with frequency k/
√

3, i.e. as if the speed of

sound was 1/
√

3, i.e. the speed of sound of a pure photon fluid. We have been too radical

in assuming Vb = 3Θ1 in the equation for baryons. In fact we saw that this assumption

is equivalent to say that R = 0, i.e. the baryon density is negligible with respect to the

photon one. That is why photons do not feel baryons at all and baryons fluctuations

oscillate in the same way as photons do. We now take into account R up to first-order. If

we consider V
(0)

b = 3Θ1 substituted in Eq. (5.59) we get up to order R:

Vb = 3Θ1 +
R

τ ′ (3Θ′
1 + 3HΘ1 − kΨ) . (5.85)

Combine the above equation and Eqs. (5.54)-(5.55) in order to find the following second-

order equation for Θ0:

Θ′′
0 + H R

1 +R
Θ′

0 +
k2

3(1 +R)
Θ0 = −k2Ψ

3
− Φ′′ − H R

1 +R
Φ′ . (5.86)

Now the speed of sound, i.e. the quantity multiplying k2, has been reduced:

c2
s =

1

3(1 +R)
. (5.87)
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The extreme of the temperature fluctuation at recombination are now expected to be

slightly changed, since:

kη∗
√

3(1 +R)
= nπ , (n = 1, 2, . . . ) , (5.88)

is now the condition defining them. Moreover, baryons are also responsible for the damping

term HRΘ′
0/(1 +R), hence we also expect the extrema to have less and less amplitude.

These features translate, once free-streamed,1 in a relative suppression of the second

peak with respect to the first one, as seen in Fig. 19. This effect is due to the baryon

loading and it is also called baryon drag. Physically, baryons are heavy and prevent the

oscillations in Θ0 to be symmetric, favouring compression over rarefaction. Since R ∝ a,

then we have that:

R′ = HR . (5.89)

Let us write Eq. (5.86) in the following form:

(

d2

dη2
+

R′

1 +R

d

dη
+ k2c2

s

)

(Θ0 + Φ) =
k2

3

(

Φ

1 +R
− Ψ

)

. (5.90)

The above equation cannot be solved analytically, but we can use a semi-analytic ap-

proximation, provided by [79]. Let us employ the WKB method and use the following

ansatz:

(Θ0 + Φ)(η, k) = A(η)eiB(η,k) , (5.91)

where A(η) and B(η, k) are functions to be determined via Eq. (5.90). Substituting this

ansatz into the homogenous part of Eq. (5.90) and find the following couple of equations,

by separately equating the real and imaginary parts to zero:

−A(B′)2 + A′′ +
R′

1 +R
A′ + k2c2

sA = 0 , (5.92)

2B′A′ + AB′′ +
R′

1 +R
AB′ = 0 . (5.93)

In the first equation, let us neglect the second and the third term with respect to the

first one. That is, the oscillations provide almost at any time (except at the extrema) a

1 To “free-stream” means to calculate the CT T,ℓ’s weighting the solution at recombination with
the spherical Bessel function of Eq. (5.24).
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much larger derivative than that of the amplitude or R. Then, the first equation is readily

solved as:

B(η, k) = k
∫ η

0
cs(η

′)dη′ ≡ krs(η) (5.94)

where in the last step we have defined the sound horizon, i.e. the conformal distance

travelled by a sound wave propagating in the baryon photon fluid. When evaluated at

recombination, rs(η∗) = 150 Mpc and this scale is fundamental for BAO, making them

standard rulers. Determining now A(η), we can see that the above equations, together

with the found solution for B(η, k), can be cast as:

A′

A
= −1

4

R′

1 +R
, (5.95)

which gives:

A(η) = (1 +R)−1/4 . (5.96)

The general, approximate, solution of the homogeneous equation is then:

(Θ0 + Φ)(η, k) =
1

(1 +R)1/4
[C(k) sin(krs) +D(k) cos(krs)] (5.97)

The condition |A′|, R′ ≪ |B′|, which was employed in order to find the above solution, can

be checked as follows:

R′

4(1 +R)5/4
, R′ ≪ k

√

3(1 +R)
, (5.98)

which essentially amounts to say that:

k ≫ R′ , (5.99)

i.e. the solution found is good on sufficiently small scales. Since R′ = HR ∼ R/η, we must

have that kη ≫ R. Since R is pretty small, being at most R∗ ≈ 0.6 at recombination,

this condition means any scale at early times, but sub-horizon scales at recombination.

Equation (5.97) gives us the general solution of the homogeneous part of Eq. (5.90). In

order to find the general solution of the full equation we need to find a particular solution

of Eq. (5.90). This can be obtained via Green’s functions method. Let us define, in order



125

to keep a more compact notation, the independent solutions of the homogeneous equation

that we have just found in Eq. (5.97) as follows:

S1(η, k) ≡ 1

(1 +R)1/4
sin(krs) , S2(η, k) ≡ 1

(1 +R)1/4
cos(krs) . (5.100)

Taking into account the non-homogeneous term, the general solution of Eq. (5.90) is:

(Θ0 + Φ)(η, k) = C(k)S1 +D(k)S2 +
k2

3

∫ η

0
dη′

[

Φ(η′)

1 +R
− Ψ(η′)

]

G(η, η′) , (5.101)

where G(η, η′) is the Green’s function. We can determine the Green’s function as:

G(η, η′) =
S1(η

′)S2(η) − S1(η)S2(η
′)

W (η′)
, (5.102)

using the homogeneous solution, we obtain:

G(η, η′) =
1

√

1 +R)

sin[krs(η
′) − krs(η)]

W (η′)
, (5.103)

and

W (η′) = − 1√
3(1 +R)

. (5.104)

We are omitting the k-dependence for simplicity. With the above results we can write:

(Θ0 + Φ)(η, k) = C(k)S1 +D(k)S2

+
k√
3

∫ η

0
dη′

[

Φ(η′)

1 +R(η′)
− Ψ(η′)

]

√

1 +R(η′) sin[krs(η) − krs(η
′)] . (5.105)

For the primordial modes, in the limit kη → 0, one gets at the dominant order:

(Θ0 + Φ)(0, k) = D(k) . (5.106)

Hence, it is the adiabatic mode which multiplies the cosine. Since sine and cosine have

a π/2 phase difference, the effect of different initial conditions is to change the scales

for which the effective temperature fluctuations is maximum or minimum and hence the

positions of the peaks in the CT T,ℓ’s. In the adiabatic case, we have:
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(Θ0 + Φ)(η, k) = (Θ0 + Φ)(0, k)
cos[krs(η)]

(1 +R)1/4

+
k√
3

∫ η

0
dη′

[

Φ(η′)

1 +R
− Ψ(η′)

]√
1 +R sin[krs(η) − krs(η

′)] (5.107)

This is the semi-analytic (semi because the integral has to be performed numerically)

formula of [79]. The above solution (5.107) can also be used for baryons. Indeed, combining

Eq. (5.56) with Eq. (5.85) and then with Eq. (5.54) we get:

δ′
b = 3Θ′

0 +
3R

τ ′

[

Θ′′
0 + Φ′′ + H(Θ′

0 + Φ′) +
k2Ψ

3

]

. (5.108)

Eliminating the second derivative by means of the differential equation (5.90), we have:

δ′
b = 3Θ′

0 +
R

τ ′(1 +R)

[

−k2Θ0 + 3H(Θ′
0 + Φ′)

]

. (5.109)

Just to make a rough estimative, let us neglect the second contribution (which is divided

by τ ′ anyway which is much larger than H and also than k, for suitable scales) and use

the homogeneous part of Eq. (5.107). It is straightforward then to integrate δ′
b and obtain

at recombination:

δb(η∗, k) ∝ cos[krs(η∗)] = cos

[

2π
rs(η∗)

λ

]

. (5.110)

So the scale rs(η∗) ≈ 150 Mpc is relevant for baryons, too. Indeed, at about this scale the

matter power spectrum display the BAO feature.

5.4. Diffusion damping

In order to understand what happens to the CT T,ℓ’s when ℓ grows larger and larger

we need to take into account smaller and smaller scales, because of the relation ℓ ≈ kη0.

As discussed earlier, for larger and larger k the ratio −τ ′/k becomes smaller and smaller

and so the TC approximation must be relaxed. In this section then we investigate what

happens to the temperature fluctuations when the quadrupole moment Θ2 is taken into

account. Since this analysis accounts for the behavior of very small scales which entered

the horizon deep into the radiation-dominated epoch, we can neglect the gravitational

potentials since these rapidly decay. Moreover, being deep into the radiation-dominated

epoch, we can also neglect R and thus take 3Θ1 = Vb. Neglecting also polarisation, we

have the following set of three equations for Θ0, Θ1 and Θ2:



127

Θ′
0 + kΘ1 = 0 , (5.111)

3Θ′
1 + 2kΘ2 − kΘ0 = 0 , (5.112)

10Θ′
2 − 4kΘ1 = 9τ ′Θ2 . (5.113)

In the last equation we can neglect Θ′
2 with respect τ ′Θ2, as we already did earlier, and

then find:

Θ2 = − 4k

9τ ′ Θ1 . (5.114)

The minus sign might ring some alarm, but recall that τ ′ is always negative by definition.

We can combine the above condition with the remaining equations in order to find a closed

equation for Θ0:

Θ′′
0 +

(

− 8k2

27τ ′

)

Θ′
0 +

k2

3
Θ0 = 0 (5.115)

This is the equation for an harmonic oscillator that we have already found earlier in

Eq. (5.64), only that now there appears a damping term which is relevant on small scales,

i.e. when k ∼ −τ ′. Baryons also provide a damping term, cf. Eq. (5.86), but they are

irrelevant in the present case since we set R = 0. This damping term here depends on

Θ2 and is time-dependent. Let us consider it constant and assume a solution of the type

Θ0 ∝ exp(iωη). Substituting this ansatz in the equation, we find:

−ω2 +

(

− 8k2

27τ ′

)

iω +
k2

3
= 0 . (5.116)

The frequency must have an imaginary part, which accounts for the damping, thus let us

stipulate:

ω = ωR + iωI , (5.117)

Substituting this ansatz in the equation and find:

ωR =
k√
3
, ωI = − 4k2

27τ ′ . (5.118)

Hence, we can write the general solution for Θ0 as:

Θ0 ∝ eikη/
√

3e−k2/k2

Silk , (5.119)
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where we have introduced the comoving diffusion length, the Silk length, as

λ2
Silk =

1

k2
Silk

≡ − 4η

27τ ′ . (5.120)

What does the diffusion length physically represent? It is the comoving distance travelled

by a photon in a time η, but taking into account the collisions which it is suffering, i.e. its

diffusion. Let us see this in some more detail. Since −τ ′ is the scattering rate, i.e. how

many collisions take place per unit conformal time, then −1/τ ′ is the average conformal

time between 2 consecutive collisions, which for a photon is also the average comoving

distance between two collision, i.e. the mean free path. Now, we have:

λ2
Silk ∝ − η

τ ′ ∝ λMFPη , (5.121)

where we have used the comoving mean free path, λMFP. Now, multiply and divide by

λMFP and take the square root:

λSilk ∝ λMFP

√

η

λMFP

, (5.122)

Under the square root we have the comoving distance η divided by the photon comoving

mean free path. This gives us the average number of collision N which the photons

experience up to the time η and hence:

λSilk ∝
√
NλMFP , (5.123)

which is the typical relation for diffusion. Below this scales λSilk all fluctuations are

suppressed because photons cannot agglomerate since they escape away. This effect is

known as Silk damping [167]. Therefore, the behaviour of the Cl’s for large l’s, as seen

in Fig. 19, is also decaying, though not exactly as in the above solution since this has

to be free-streamed first. We can do a more detailed calculation of the damping scale as

follows. Let us neglect the gravitational potential and the ℓ ≥ 3 multipoles as before, but

let us deal with more care of baryons and take into account polarisation. From Eq. (5.59)

we have:

Vb = 3Θ1 +
R

τ ′ (V ′
b + HVb) , (5.124)

and the six equations for the monopole, dipole and quadrupole of the temperature

fluctuations and polarisation:
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Θ′
0 + kΘ1 = 0 , (5.125)

3Θ′
1 + 2kΘ2 − kΘ0 = τ ′(3Θ1 − Vb) , (5.126)

10Θ′
2 − 4kΘ1 = 9τ ′Θ2 − τ ′ΘP 0 − τ ′ΘP 2 , (5.127)

2Θ′
P 0 + 2kΘP 1 = τ ′ΘP 0 − τ ′ΘP 2 − τ ′Θ2 , (5.128)

3Θ′
P 1 + 2kΘP 2 − kΘP 0 = 3τ ′ΘP 1 , (5.129)

10Θ′
P 2 − 4kΘP 1 = 9τ ′ΘP 2 − τ ′ΘP 0 − τ ′Θ2 . (5.130)

Now, assuming a solution of the type exp(i
∫

ωdη) for all the above 7 variables and also

assuming that ω ≫ H, we have:

Vb =
3Θ1

1 +Riωηc

, (5.131)

where we have defined ηc ≡ −1/τ ′ as the the average conformal time between 2 consecutive

collisions. We have thus a closed system for Θ0, Θ1, Θ2, ΘP 0, ΘP 1 and ΘP 2:

iωΘ0 + kΘ1 = 0 , (5.132)

−kΘ0 + 3iωΘ1

(

1 +
R

1 +Riωηc

)

+ 2kΘ2 = 0 , (5.133)

−4kηcΘ1 + (10iωηc + 9)Θ2 − ΘP 0 − ΘP 2 = 0 , (5.134)

−Θ2 + (2iωηc + 1)ΘP 0 + 2kηcΘP 1 − ΘP 2 = 0 , (5.135)

−kΘP 0 + 3(iωηc + 1)ΘP 1 + 2kηcΘP 2 = 0 , (5.136)

−Θ2 − ΘP 0 − 4kηcΘP 1 + (10iωηc + 9)ΘP 2 = 0 . (5.137)

We have already arranged the variables in order for the system matrix to appear clearly.

The determinant of this matrix, in order to have a non trivial solution, must be zero.

Considering the limit ωηc ≪ 1, and keeping the first-order only in ωηc we get:

k2

3
− ω2(1 +R) +

2i

30
ωηc

[

37k2 − 285(1 +R)ω2 + 15ω2R2
]

= 0 . (5.138)

In order to solve for ω, let us again employ the smallness of ωηc and stipulate that:

ω = ω0 + δω , (5.139)

where δω is a small correction. From the above equation is then straightforward to obtain:
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k2

3
− ω2

0(1 +R) = 0 , (5.140)

−2ω0δω(1 +R) +
2i

30
ω0ηc

[

37k2 − 285(1 +R)ω2
0 + 15ω2

0R
2
]

= 0 . (5.141)

The first equation gives the result that we have already encountered:

ω2
0 =

k2

3(1 +R)
= k2c2

s (5.142)

which, substituted in the second equation, gives us:

δω =
iηck

2

6(1 +R)

[

16

15
+

R2

1 +R

]

(5.143)

This result was obtained for the first time by [86]. See also the derivation of [200].

Therefore, the evolution of the multipoles is proportional to the following factor:

exp
(

i
∫

ωdη
)

= eikrs(η)e−k2/k2

Silk , (5.144)

where

1

k2
Silk

≡ −
∫ η

0
dη′ 1

6τ ′(1 +R)

(

16

15
+

R2

1 +R

)

(5.145)

From the best fit values of the parameter of the ΛCDM model we have:

dSilk = 0.0066 Mpc (5.146)

5.5. Line-of-sight integration

The approximate solutions found earlier are based on the TC limit, which allows

us to take into account just the monopole and the dipole until recombination and then

to better understand the physics behind the CMB anisotropies. On the other hand,

observation demands more precise calculations to be compared with and therefore, at the

end, numerical computation and codes such as CLASS are needed. Even so, there is a more

efficient way of computing predictions on the CMB anisotropies than dealing directly with

the hierarchy of Boltzmann equation and that is to formally integrate along the photon

past light-cone according to a semi-analytic technique called line-of-sight integration,
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due to Seljak and Zaldarriaga [166], and which was the basis for the CMBFAST code.2

Recall the photon Boltzmann equations:

Θ′ + ikµΘ = −Φ′ − ikµΨ − τ ′
[

Θ0 − Θ − iµVb − 1

2
P2(µ)Π

]

, (5.147)

Θ′
P + ikµΘP = −τ ′

[

−ΘP +
1

2
[1 − P2(µ)]Π

]

, (5.148)

where Π = Θ2 + ΘP 2 + ΘP 0. Let us rewrite them as follows:

Θ′ + (ikµ− τ ′)Θ = −Φ′ − ikµΨ − τ ′
[

Θ0 − iµVb − 1

2
P2(µ)Π

]

≡ S(η, k, µ) , (5.149)

Θ′
P + (ikµ− τ ′)ΘP = −τ ′

2
[1 − P2(µ)]Π ≡ SP (η, k, µ) , (5.150)

where we have introduced two source functions on the right hand sides. Note that the

dependence in on k and not on k = kẑ because we are considering the equations for the

transfer functions. Afterwards, before performing the anti-Fourier transform, we must

rotate back k̂ in a generic direction. Let us write the left hand sides as follows:

Θ′ + (ikµ− τ ′)Θ = e−ikµη+τ d

dη

(

Θ eikµη−τ
)

, (5.151)

with a similar expression for ΘP . Substituting these into the Boltzmann equations and

integrating formally from a certain initial ηi → 0 to today η0, we get:

Θ(η0)e
−τ(η0) = Θ(ηi)e

ikµ(ηi−η0)−τ(ηi) +
∫ η0

ηi

dη eikµ(η−η0)−τ(η)S(η, k, µ) , (5.152)

ΘP (η0)e
−τ(η0) = ΘP (ηi)e

ikµ(ηi−η0)−τ(ηi) +
∫ η0

ηi

dη eikµ(η−η0)−τ(η)SP (η, k, µ) , (5.153)

Now recall the definition of the optical depth:

τ ≡
∫ η0

η
dη′ neσTa . (5.154)

It is clear then that τ(η0) = 0 and, since ηi → 0 is deep into the radiation-dominated

epoch, then τ ∝ 1/η is very large and we can neglect exp[−τ(ηi)]. Therefore, we are left

with

Θ(η0, k, µ) =
∫ η0

0
dη eikµ(η−η0)−τ(η)S(η, k, µ) , (5.155)

ΘP (η0, k, µ) =
∫ η0

0
dη eikµ(η−η0)−τ(η)SP (η, k, µ) . (5.156)

2 https://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
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where we have already implemented the limit ηi → 0. Now we calculate the Θℓ’s inverting

the Legendre expansion and obtain:

Θℓ(η0, k) =
1

(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ)

∫ η0

0
dη eikµ(η−η0)−τ(η)S(k, η, µ) , (5.157)

ΘP ℓ(η0, k) =
1

(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ)

∫ η0

0
dη eikµ(η−η0)−τ(η)SP (k, η, µ) , (5.158)

The source terms have µ-dependent contributions (up to µ2) that we can handle integrating

by parts. Take for example the −ikµΨ contribution of S(k, η, µ). Let IΨ be its integral,

which can be rewritten as follows:

IΨ ≡ −
∫ η0

0
dη ikµΨeikµ(η−η0)−τ(η) = −

∫ η0

0
dη Ψe−τ(η) d

dη

[

eikµ(η−η0)
]

, (5.159)

and now it is easy to integrate by parts and obtain:

IΨ = − Ψe−τ(η)eikµ(η−η0)
∣

∣

∣

η0

0
+
∫ η0

0
dη eikµ(η−η0) d

dη

[

Ψe−τ(η)
]

. (5.160)

The first contribution gives −Ψ(η0), i.e. the gravitational potential evaluated at present

time. This is just an undetectable offset that we incorporate into the definition of Θℓ(η0, k),

as the observed anisotropy, like we did at the beginning of this Chapter when dealing with

the free-streaming solution. Taking care of the term containing µ2, in P2(µ), we can see

that:
∫ η0

0
dη τ ′µ2Πeikµ(η−η0)−τ(η) = − 1

k2

∫ η0

0
dη eikµ(η−η0) d

2

dη2

[

τ ′Πe−τ(η)
]

. (5.161)

care Combining all the terms treated with integration by parts, we get:

Θℓ(k, η0) =
1

(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ)

∫ η0

0
dη eikµ(η−η0)

[

−
(

Φ′ + τ ′Θ0 +
τ ′Π

4

)

e−τ +

(

Ψe−τ − τ ′Vbe
−τ

k

)′
− 3

4k2

(

τ ′Πe−τ
)′′
]

, (5.162)

ΘP ℓ(k, η0) = − 3

4(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ)

∫ η0

0
dη eikµ(η−η0)

[

τ ′Πe−τ +
1

k2

(

τ ′Πe−τ
)′′]

. (5.163)

Using now the relation of Eq. (5.15), we can cast the above equations as:

Θℓ(η0, k) =
∫ η0

0
dη S(η, k)jℓ [k(η0 − η)] , (5.164)

ΘP ℓ(η0, k) =
∫ η0

0
dη SP (η, k)jℓ [k(η0 − η)] . (5.165)
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with

S(η, k) ≡ (Ψ′ − Φ′)e−τ + g

(

Θ0 +
Π

4
+ Ψ

)

+
1

k
(gVb)′ +

3

4k2
(gΠ)′′ , (5.166)

SP (η, k) ≡ 3

4
gΠ +

3

4k2
(gΠ)′′ , (5.167)

where we have introduced the visibility function:

g(η) ≡ −τ ′e−τ (5.168)

We can see that the visibility function is normalised to unity, i.e.

∫ η0

0
dη g(η) = 1 . (5.169)

The visibility function represents the Poissonian probability that a photon is last scattered

at a time η. It is very peaked at a time that we define as the one of recombination, i.e.

at η = η∗, because for η > η∗ it is basically zero, since τ ′ = 0. Before recombination,

in the radiation-dominated epoch, we saw that −τ ′ ∝ 1/η2 and thus τ ∝ 1/η and

g ∝ exp(−1/η)/η2, i.e. it goes to zero exponentially fast. In Fig. 21 we plot the numerical

calculation of the visibility function performed with CLASS for the standard model. Note

the peak at about z = 1000, which has always been our reference for the recombination

redshift. Note also another peak at about z = 10, representing the epoch of reionisation.

Until now we have used the peakedness of the visibility function as if it were a Dirac delta

δ(η− η∗), i.e. we have made the sudden recombination approximation. From Fig. 21

we can appreciate that it is a good approximation (mind the logarithmic scale there). As

usual, in cosmology but not only, the calculations get more and more complicated and

impossible to do analytically the more precision we demand.

Inserting the source terms (5.166) and (5.167) in the expressions for Θℓ(η0, k) and

ΘP ℓ(η0, k) in the expression of Θℓ and integrating by parts, we get:

Θℓ(k, η0) =
∫ η0

0
dη g

(

Θ0 + Ψ +
Π

4

)

jℓ [k(η0 − η)]

−
∫ η0

0
dη
gVb

k

d

dη
jℓ [k(η0 − η)] +

∫ η0

0
dη

3gΠ

4k2

d2

dη2
jℓ [k(η0 − η)]

+
∫ η0

0
dη e−τ (Ψ′ − Φ′)jℓ [k(η0 − η)] , (5.170)

ΘP ℓ(k, η0) =
∫ η0

0
dη

3gΠ

4
jℓ [k(η0 − η)] +

∫ η0

0
dη

3gΠ

4k2

d2

dη2
jℓ [k(η0 − η)] . (5.171)

Assuming the visibility function to be a Dirac delta δ(η−η∗), i.e. the sudden recombination

mentioned earlier, and neglecting Π, we recover formula (5.24). Note that neglecting
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Figure 21 – Visibility function g as function of the redshift from the numerical calculation
performed with CLASS for the standard model.

Π no polarisation is present. Indeed, from the above equation we see that a non-zero

quadrupole moment of the photon distribution at recombination is essential in order to

have polarisation. The above equations still need the Boltzmann hierarchy in order to

be integrated, but just up to ℓ = 4 (because Θ2 and Θ4 moments are contained in the

equation for Θ′
3) and hence are much more convenient from the computational point of

view. The partial wave expansion of Θ given by:

Θ(k, µ) =
∑

ℓ

(−i)ℓ(2ℓ+ 1)Pℓ(µ)Θℓ(k) , (5.172)

and that we have used in the above calculations is valid as long as k̂ = ẑ. Now we have to

rotate it in a general direction before performing the Fourier anti-transform. The task is

simple because the temperature fluctuation is a scalar. Therefore:

Θ(k, k̂ · p̂) =
∑

ℓ

(−i)ℓ(2ℓ+ 1)Pℓ(k̂ · p̂)Θℓ(k) . (5.173)

The same is not true for ΘP , since the Stokes parameters are not scalars. Using the
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definition of aT,ℓm, we can then write:

aS
T,ℓm =

∫

d2n̂ Y m∗
ℓ (n̂)

∑

l

(−i)ℓ(2ℓ+ 1)
∫ d3k

(2π)3
Pℓ(k̂ · p̂)α(k)Θℓ(k) . (5.174)

The integration is over d2n̂, hence we must change p̂ → n̂ = −p̂ in the Legendre polynomial.

This gives an extra (−1)ℓ factor, due to the parity of the Legendre polynomials, and then

using the addition theorem we obtain:

aS
T,ℓm =

∫

d2n̂ Y m∗
ℓ (n̂)

∑

l

iℓ(2ℓ+ 1)
∫ d3k

(2π)3
α(k)

4π

2ℓ′ + 1

ℓ′
∑

m′=−ℓ′

Y ∗m′

ℓ′ (k̂)Y m′

ℓ′ (n̂)Θℓ(k) . (5.175)

Now the integration over the whole solid angle can be performed and the orthonor-

mality of the spherical harmonics can be employed, obtaining thus:

aS
T,ℓm = 4πiℓ

∫ d3k
(2π)3

Y m∗
ℓ (k̂)α(k)Θℓ(k) (5.176)

This formula, together with Eq. (5.170) allows us to explicitly calculate the scalar contribu-

tion to the aT,ℓm’s. Earlier, we have focused on the CT T,ℓ’s only, for which the calculations

are simpler because there is no need of performing a spatial rotation, but we need to know

the explicit form of the aT,ℓm’s in order to compute the TE correlation spectrum.

5.6. Cosmological parameters determination

In this section we discuss how the CMB TT spectrum, i.e. the CT T,ℓ’s, are sensitive

to the cosmological parameters. We have learned in this Chapter about many quantities

which are of relevance in forming the shape of the spectrum but we have not actually

derived an analytic, approximated formula in order to see this explicitly. These can be

found in [131] and [200]. Here instead we plot with CLASS various spectra for varying

parameters and discuss the physics behind the changes. Note that, for the standard Λ

model, 6 of the overall parameters are usually left free and constrained by observation:

1. The amplitude of the primordial power spectrum: AS;

2. The primordial tilt: nS;

3. The baryonic abundance: Ωb0h
2;
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4. The CDM abundance: Ωc0h
2;

5. The reionization epoch: zreion;

6. The sound horizon at recombination: rs(η∗), which is related to the Hubble constant

value H0.

The other parameters can be derived by these ones. In particular, the amount of radiation

is already well known by measuring the CMB temperature and so the amount of Λ and

curvature is determined via the positions of the peaks, which depend on rs(η∗), which in

turn depends on the baryon content. In Figs. 22 and 23 we start to show the numerical

calculation of CMB TT power spectrum decomposed in the contributions discussed in this

Chapter. See also [191]. We consider the ΛCDM as fiducial model.
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Figure 22 – Total CMB TT power spectrum (blue line) computed with CLASS and
decomposed in the physically different contributions: Sachs-Wolfe effect (yellow line),
early-times ISW effect (green line), late-times ISW effect (red line), Doppler effect (purple

line), and polarisation (brown line).

In Fig. 24 we show what happens to CMB TT the spectrum for Ωb0h
2. Taking the first

peak height as reference, the larger the value of Ωb0h
2 is, the higher the peak is. When we

vary one of the density parameters, since their sum must be equal to one that means that

also something else must vary. In this case we have chosen to vary ΩΛ.

Why so? We have seen that baryons loading makes compression favoured over rarefaction

and hence the first and the third peaks are higher for higher values of Ωb0h
2, but the

second one is lower. In other words, the peaks relative height is very sensitive to the

baryon content. The position of the first peak does not change much because it is most

sensitive to the spatial curvature and this has been fixed to zero. Finally, the curves for
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Figure 23 – Same as Fig. 22 but in logarithmic scale, in order to better distinguish the
weakest contributions.

� �� �� ��� ��� ����
�

����

����

����

����

����

����

����

Figure 24 – CMB TT power spectrum computed with CLASS and varying Ωb0h
2. From

the lowest first peak to the highest: Ωb0h
2 = 0.010, 0.014, 0.018, 0.022, 0.026, 0.030, 0.034.
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larger Ωb0h
2, as we commented, have less ΩΛ and therefore less ISW effect. For these

reason they are slightly lower for small ℓ.
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Figure 25 – CMB TT power spectrum computed with CLASS and varying Ωc0h
2. From

the highest first peak to the lowest: Ωc0h
2 = 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15.

In Fig. 25 we show what happens to CMB TT the spectrum for Ωc0h
2. Taking the first peak

height as reference, the larger the value of Ωc0h
2 is, the lower the peak is. This behaviour is

the opposite of the one that we found by varying Ωb0h
2. Mostly CDM intervenes through

the SW effect since it dominates the gravitational potential Ψ at recombination. The

first peak is affected more because it corresponds to large scales, basically the horizon at

recombination, and there the transfer function is approximately unit, meaning that −Ψ is

as large as possible. The subsequent peaks correspond to scales which entered the horizon

much earlier and therefore the CDM influence there is weak. In this case also we have

chosen to vary ΩΛ in order to keep the total density budget. Indeed, the more CDM, the

less Λ and the less ISW effect, as expected.

In Fig. 26 we show what happens to CMB TT the spectrum for τreion. As we have

commented in the previous section, the overall effect of reionisation is simple because it

happens very lately: a damping of the order exp(−2τreion) for multipoles larger than a

certain ℓreion which we infer to be about 10 from the plots in Fig. 26.

From Fig. 27 we can appreciate how the CMB TT power spectrum is affected by the

spatial geometry of the universe. From the leftmost spectrum to the rightmost one

ΩK0 = −0.2,−0.1, 0, 0.1, 0.2. Hence, the position of the first peak is of great importance

in order to determine whether our universe is closed or open. Note that the flat case is a

limiting value which we cannot determine observationally, because of the experimental

error; we can only conclude that observation is consistent with ΩK0 = 0, i.e. this value is
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Figure 26 – CMB TT power spectrum computed with CLASS and varying τreion. From
the highest first peak to the lowest: τreion = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7.
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Figure 27 – CMB TT power spectrum computed with CLASS and varying ΩK0. From the
left to the right: ΩK0 = −0.2,−0.1, 0, 0.1, 0.2.
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not ruled out. As we saw in Eq. (5.107), the length scale associated to the acoustic peaks

is the sound horizon at recombination:

rs(η∗) =
∫ η∗

0
csdη , (5.177)

where the speed of sound of the baryon-photon plasma is given by Eq. (5.87):

c2
s =

1

3(1 +R)
=

4Ωγ0

3(4Ωγ0 + 3Ωb0a)
. (5.178)

The physical sound horizon is given by:

rphys
s (z∗) =

∫ t∗

0
cs(t)dt =

∫ ∞

z∗

dz
cs(z)

H(z)(1 + z)
, (5.179)

i.e. integrating the lookback time. We need the physical quantity in order to relate it with

the angular-diameter distance to recombination:

dA(z∗) =
1

(1 + z∗)

∫ z∗

0

dz

H(z)
, (5.180)

and thus estimate the multipole corresponding to the first peak:

ℓ1st ≈ 1

θ1st

=
dA(z∗)

rphys
s (z∗)

. (5.181)

Let us approximate the physical sound horizon by assuming cs constant and a matter-

dominated universe. We have thus:

rphys
s (z∗) ≈ cs

H0

√
Ωm0

∫ ∞

z∗

dz

(1 + z)5/2
=

2cs

3H0

√
Ωm0

1

(1 + z∗)3/2
, (5.182)

and for the angular-diameter distance we also assume a matter plus Λ universe:

dA(z∗) =
1

H0(1 + z∗)

∫ z∗

0

dz
√

Ωm0(1 + z)3 + (1 − Ωm0)
. (5.183)

We can see that dA(z∗) can be approximated as:

dA(z∗) ≈ 2

7H0(1 + z∗)
√

Ωm0

(9 − 2Ω3
m0) . (5.184)

Hence, we have:

ℓ1st ≈ 0.74
√

1 + z∗(9 − 2Ω3
m0) ≈ 220 , (5.185)
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which clearly shows how the position of the first peak changes as function of the total

matter content.
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Figure 28 – CMB TT power spectrum computed with CLASS and varying initial conditions:
adiabatic (blue line), baryon isocurvature (yellow line), CDM isocurvature (green line),

neutrino density isocurvature (red line), neutrino velocity isocurvature (purple line).

In fig. 28 we show how the initial conditions dramatically affect the CMB TT power

spectrum and how the adiabatic ones are favoured by observation (when comparing with

the data points of Fig. 19).

5.7. Tensor contribution to the CMB TT correlation

Tensor perturbations also contribute to generate temperature anisotropies, which

we report here after renormalising to the primordial mode β(k, λ),

(

∂

∂η
+ ikµ− τ ′

)

Θ(T )(η, k, µ) +
h

′T

2
=

−τ ′
[

3

70
Θ

(T )
4 +

1

7
Θ

(T )
2 +

1

10
Θ

(T )
0 − 3

70
Θ

(T )
P 4 +

6

7
Θ

(T )
P 2 − 3

5
Θ

(T )
P 0

]

≡ −τ ′ST (η, k) , (5.186)
(

∂

∂η
+ ikµ− τ ′

)

Θ
(T )
P (η, k, µ) = τ ′ST (η, k) , (5.187)

The label λ representing the two possible states of helicity is absent because of the

renormalisation with β(k, λ). It represents the fact that the evolution of the two helicities

is the same. The line-of-sight solutions of the above equations are the following:
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Θ(T )(η0, k, µ) =
∫ η0

0
dη eikµ(η−η0)−τ

[

−h′T/2 − τ ′ST (η, k)
]

, (5.188)

Θ
(T )
P (η0, k, µ) =

∫ η0

0
dη eikµ(η−η0)−ττ ′ST (η, k) . (5.189)

We now focus on Θ(T )(η0, k, µ). Defining:

ST (η, k) ≡ e−τ
[

−h′T/2 − τ ′ST (η, k)
]

, (5.190)

the tensor contribution to the temperature fluctuation is made up of the sum of the

following two contributions:

fλ(kẑ, p̂) ≡ 4

√

π

15
Y λ

2 (p̂)
∫ η0

0
dη ST (η, k)e−iµkr(η) , (5.191)

where r(η) ≡ η0 − η and where we stress that the result holds true for k̂ = ẑ since this was

the condition under which we derived the Boltzmann equation for photons. We cannot

yet sum over λ because we have to include β(k, λ) first. For this reason, we shall work

on fλ(kẑ, p̂). In order to investigate temperature fluctuations in the sky, we need to

anti-transform Θ(T )(k, p̂) in order to employ the usual expansion:

Θ(T )(n̂) =
∑

ℓm

aT
T,ℓmY

m
ℓ (n̂) , aT

T,ℓm =
∫

d2n̂ Y m∗
ℓ (n̂)Θ(T )(n̂) . (5.192)

So, let us proceed as follows. We trade p̂ for the line-of-sight n̂ = −p̂ and use the expansion

of a plane wave in spherical harmonics:

eik̂·n̂kr =
∑

LM

iLY M∗
L (k̂)Y M

L (n̂)jL(kr) , (5.193)

in Eq. (5.191). since k̂ = ẑ then, we can see that:

Y M∗
L (k̂) = Y M∗

L (ẑ) = δM0

√

2L+ 1

4π
, (5.194)

i.e. for θ = 0 (representing the ẑ direction) the spherical harmonics are non-vanishing only

if M = 0.

Therefore, we can write:

fλ(kẑ, n̂) =
2√
15
Y λ

2 (n̂)
∑

L

iL
√

2L+ 1Y 0
L (n̂)

∫ η0

0
dη ST (η, k)jL(kr) . (5.195)

The idea is now to perform a rotation in order to put k̂ in a generic direction. But then

also n̂ rotates and therefore we need to know how a spherical harmonics behaves under
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rotations. In order to deal with just one spherical harmonic we take advantage of the

following decomposition:

Y ±2
2 (n̂)Y 0

L (n̂) =

√

5(2L+ 1)

4π

∑

L′

√
2L′ + 1





L 2 L′

0 ±2 ∓2









L 2 L′

0 0 0



Y ±2
L′ (n̂) , (5.196)

where we have employed the Wigner 3j-symbols, which are coefficients appearing in the

quantum theory of angular momentum, when we combine two angular momenta and we

want to write the state of total angular momentum as a linear combination on the basis of

the tensor product of the two combined angular momenta. They are an alternative to the

(perhaps more commonly used) Clebsch-Gordan coefficient See e.g. [96] and [202]. This

expansion allows us to deal with just one spherical harmonics. Now we take advantage of

the properties of the spherical harmonics under spatial rotation, i.e.

Y m
ℓ (Rn̂) =

ℓ
∑

m′=−ℓ

D
(ℓ)
m′m(R−1)Y m′

ℓ (n̂) (5.197)

where the D
(ℓ)
m′m are the elements of the Wigner D-matrix. See [96] for more detail. The

above R is a generic rotation. Of course, we are interested in a R(k̂) rotation which brings

k̂ in a generic direction. Hence, we can write:

fλ(k, n̂) =
∑

L

iL
2L+ 1√

3π

∑

L′

√
2L′ + 1





L 2 L′

0 λ −λ









L 2 L′

0 0 0





∑

m′

D
(L′)
m′λ[R(k̂)]Y m′

L′ (n̂)
∫ η0

0
dη ST (η, k)jL(kr) . (5.198)

Here we have dubbed Rn̂ the original line of sight and n̂ the resulting one after the rotation.

Now we can perform the Fourier anti-transform. Let us multiply fλ(k, n̂) by β(k, λ) and

Y m∗
ℓ (n̂) and integrate over d2n̂ in order to obtain the aT

T,ℓm’s. We obtain:

aT
ℓm,±2 =

∑

L

iL
2L+ 1√

3π

√
2ℓ+ 1





L 2 ℓ

0 ±2 ∓2









L 2 ℓ

0 0 0





∫ d3k
(2π)3

D
(ℓ)
m±2[R(k̂)]β(k,±2)

∫ η0

0
dη ST (η, k)jL(kr) . (5.199)

We have used here the orthonormality relation of the spherical harmonics and distinguished

the contributions from different helicities. Of course aℓm = aℓm,+2 + aℓm,−2. It is now time
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to compute the 3j symbols and to perform the summation over L. A general formula for

those was obtained in [152], but we can read their expression from [96]. We then have the

only following non-vanishing occurrences:





ℓ 2 ℓ

0 0 0



 = (−1)ℓ+1

√

√

√

√

ℓ(ℓ+ 1)

(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
, (5.200)





ℓ+ 2 2 ℓ

0 0 0



 = (−1)ℓ

√

√

√

√

3(ℓ+ 1)(ℓ+ 2)

2(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)
, (5.201)





ℓ− 2 2 ℓ

0 0 0



 = (−1)ℓ

√

√

√

√

3ℓ(ℓ− 1)

2(2ℓ− 3)(2ℓ− 1)(2ℓ+ 1)
. (5.202)

In particular, there is no contribution coming from L = ℓ± 1. The other three relevant

(i.e. not considering those for L = ℓ± 1 which are non-vanishing in this case) symbols are:





ℓ 2 ℓ

0 ±2 ∓2



 = (−1)ℓ

√

√

√

√

3(ℓ− 1)(ℓ+ 2)

2(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
, (5.203)





ℓ+ 2 2 ℓ

0 ±2 ∓2



 = (−1)ℓ 1

2

√

√

√

√

(ℓ− 1)ℓ

(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)
, (5.204)





ℓ− 2 2 ℓ

0 ±2 ∓2



 = (−1)ℓ 1

2

√

√

√

√

(ℓ+ 1)(ℓ+ 2)

(2ℓ− 3)(2ℓ− 1)(2ℓ+ 1)
, (5.205)

We can derive the above expressions for the relevant Wigner 3j symbols given in [96] and

put them in Eq. (5.199), such that:

aT
T,ℓm,±2 = −iℓ

√

√

√

√

(2ℓ+ 1)(ℓ+ 2)!

8π(ℓ− 2)!

∫ d3k
(2π)3

D
(ℓ)
m±2[R(k̂)]β(k,±2)

∫ η0

0
dη ST (η, k)

[

jℓ−2(kr)

(2ℓ− 1)(2ℓ+ 1)
+

2jℓ(kr)

(2ℓ− 1)(2ℓ+ 3)
+

jℓ+2(kr)

(2ℓ+ 1)(2ℓ+ 3)

]

. (5.206)

Recall that r = r(η) ≡ η0 − η. We can see that, using the recurrence relation [11]:

jℓ(x)

x
=
jℓ−1(x) + jℓ+1(x)

2ℓ+ 1
, (5.207)

we can write:

aT
T,ℓm = −iℓ

√

√

√

√

(2ℓ+ 1)(ℓ+ 2)!

8π(ℓ− 2)!

∑

λ=±2

∫ d3k
(2π)3

D
(ℓ)
m,λ[R(k̂)]β(k, λ)

∫ η0

0
dη ST (η, k)

jℓ(kr)

(kr)2
. (5.208)
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The Wigner D-matrix can be related to the spin-weighted spherical harmonics as follows:

D
(ℓ)
m,±2(k̂) =

√

4π

2ℓ+ 1
±2Y

−m
ℓ (k̂) =

√

4π

2ℓ+ 1
∓2Y

m∗
ℓ (k̂) , (5.209)

so we have:

aT
T,ℓm = −iℓ

√

√

√

√

(ℓ+ 2)!

2(ℓ− 2)!

∑

λ=±2

∫ d3k
(2π)3 λY

m∗
ℓ (k̂)β(k, λ)

∫ η0

0
dη ST (η, k)

jℓ(kr)

(kr)2
(5.210)

This is our main result of this section. It is not surprising that Y m∗
ℓ (k̂) eventually

appeared, being GW a spin-2 field. In order to compute the tensor contribution to the

CT T,ℓ’s, we perform the ensemble average:

〈aT
T,ℓma

T ∗
T,ℓ′m′〉 = CT

T T,ℓδℓℓ′δmm′ . (5.211)

Assuming Gaussian perturbations and the orthogonality property of the Wigner D-matrices

or the spin-weighted spherical harmonics:

∫

d2k̂ D
(ℓ)
m,±2[R(k̂)]D

(ℓ′)∗
m′,±2[R(k̂)] =

4π

2ℓ+ 1
δℓℓ′δmm′ , (5.212)

We can see that:

CT
T T,ℓ =

(ℓ+ 2)!

4π(ℓ− 2)!

∫ ∞

0

dk

k
∆2

h(k)

∣

∣

∣

∣

∣

∫ η0

0
dη ST (η, k)

jℓ(kr)

(kr)2

∣

∣

∣

∣

∣

2

(5.213)

Note that a factor 2 arises because of the two polarisation states. The above result was

originally obtained in [9] (though not exactly in the same way and final form). The main

difficulty we faced in computing the aT
T,ℓm was the spatial rotation which brought k̂ in

a generic direction. This can be avoided if we calculate straightaway CT
T T,ℓ because it is

rotationally invariant. Note that no correlation exists between scalar and tensor modes.

In fact if we compute:

〈aT
T,ℓma

S∗
T,ℓ′m′〉 , (5.214)

we would get zero, mathematically because of the integral:

∫

d2k̂ 2Y
m

ℓ (k̂)Y m′

ℓ′ (k̂) = 0 , (5.215)

between a spin-2 spherical harmonic and a spin-0 one. Physically, because we know that at

the linear order scalar and tensor perturbations do not couple. We can again approximate
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this angular power spectrum for large values of ℓ as follows. First, ST (η, k) contains the

derivative of h, which is maximum when a mode enters the horizon, for kη ≈ 1, being

almost zero elsewhere. Therefore, assuming instantaneous recombination, we can write:

CT
T T,ℓ =

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

4π

∫ ∞

0

dk

k
∆2

h(k)
j2

ℓ (kη0)

(kη0)4
. (5.216)

Defining the new variable x ≡ kη0 and introducing the primordial tensor power spectrum

we get:

CT
T T,ℓ ∝ (ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

4π

∫ ∞

0
dx xnT −5j2

ℓ (x) . (5.217)

The integral can be performed exactly:

∫ ∞

0
dx xnT −5 =

√
π

2

Γ[1 − (nT − 4)/2]Γ[(nT − 4)/2 + ℓ]

(4 − nT )Γ[1/2 − (nT − 4)/2]Γ[ℓ+ 2 − (nT − 4)/2]
, (5.218)

but in the case of nT = 0, a scale-invariant primordial tensor spectrum, we get:

ℓ(ℓ+ 1)CT
T T,ℓ

2π
∝ ℓ(ℓ+ 1)

(ℓ− 2)(ℓ+ 3)
. (5.219)

The behaviour of the tensor contribution to the TT power spectrum is thus very different

from the one coming from scalar perturbations. In Fig. 29 we display the numerical

calculations done with CLASS of the total (solid line), scalar (dashed line) and tensor

(dotted line) angular power spectra. The tensor contribution is practically irrelevant on

very small angular scale (i.e. large ℓ) and on large angular scales they can be as large

as 10% of the total. Typically then one can give upper limits on CT
T T,ℓ/C

S
T T,ℓ for small

multipoles (ℓ = 2 or ℓ = 10) and this ratio is proportional to AT/AS and therefore on

the parameter r, the tensor-to-scalar ratio, such that r < 0.1. In order to determine

this constraint one has also to use polarisation data since with these we are able to

disentangle the AS exp(−2τreion) dependence coming from the scalar contribution only to

the temperature power spectrum.

5.8. Polarisation

In this section we address CMB polarisation. Recall that before recombination

polarisation is also erased because of tight-coupling. Polarisation is generated thanks to the

fact that recombination does not take place instantaneously, so the finite-thickness effect

is indeed important. Moreover, since Thomson scattering is axially-symmetric, circular

polarisation is not produced.
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Figure 29 – Numerical calculations done with CLASS of the total (solid line), scalar
(dashed line) and tensor (dotted line) angular power spectra

5.8.1 Scalar perturbations contribution to polarisation

Now, let us focus on scalar perturbations only and write down the line of sight

solution for the combination Q + iU . Since we have chosen a reference frame in which

k̂ = ẑ, there is no U polarisation. This can be also seen from the fact that B0 = 0. Hence,

we shall again perform a rotation in order to compute the aP,ℓm. We have called ΘP the

Stokes parameter Q in the k̂ = ẑ frame. So, let us work on its line-of-sight solution, such

that:

ΘP (kẑ, n̂) =
3

2

√

8π

15
2Y

0
2 (n̂)

∫ η0

0
dη e−iµkrSS

P (η, k) , (5.220)

where we have defined a new source term:

SS
P (η, k) ≡ g(η)Π(η, k) . (5.221)

We could have written −2Y
0

2 (n̂) instead of 2Y
0

2 (n̂), since they are equal. However, we are

going to deal with Q+ iU first. The above equation can written as:

ΘP (kẑ, n̂) =

√

9

30
2Y

0
2 (p̂)

∑

L

iL
√

2L+ 1Y 0
L (n̂)

∫ η0

0
dη SS

P (η, k)jL(kr) , (5.222)

where again r ≡ η0 − η and we have used the well-known-by-now expansion of a plane

wave into spherical harmonics plus the fact that k̂ = ẑ. Now, as in Eq. (5.196) we can

write the product of spherical harmonics as follows:
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2Y
0

2 (n̂)Y 0
L (n̂) =

√

5(2L+ 1)

4π

∑

L′

√
2L′ + 1





L 2 L′

0 −2 +2









L 2 L′

0 0 0





2Y
0

L′(n̂) , (5.223)

and thus obtain:

(Q+ iU)S(n̂) =

√

3

8π

∑

L

iL(2L+ 1)
∑

L′

√
2L′ + 1





L 2 L′

0 −2 2









L 2 L′

0 0 0





∑

m′

2Y
m′

L′ (n̂)
∫ d3k

(2π)3
D

(L′)
m′0 (k̂)α(k)

∫ η0

0
dη SS

P (η, k)jL(kr) , (5.224)

where we have already considered the rotation which brings k̂ in a generic direction. Now,

from the expansion:

(Q+ iU)S(n̂) =
∑

ℓm

aS
P,ℓm 2Y

m
ℓ (n̂) , (5.225)

we are able to calculate the coefficients aS
P,ℓm by taking advantage of the orthonormality

of the spin-2 spherical harmonics. We can therefore write:

aS
P,ℓm =

√

3

8π

∑

L

iL(2L+ 1)
√

2ℓ+ 1





L 2 ℓ

0 −2 2









L 2 ℓ

0 0 0





∫ d3k
(2π)3

D
(ℓ)
m0(k̂)α(k)

∫ η0

0
dη SS

P (η, k)jL(kr) . (5.226)

Remarkably, the sum over L can be performed in the very same way we did for the aT
T,ℓm,

since the 3j symbols are the same. Therefore, we have:

aS
P,ℓm = −3iℓ

8

√

√

√

√

(2ℓ+ 1)(ℓ+ 2)!

π(ℓ− 2)!

∫ d3k
(2π)3

D
(ℓ)
m0(k̂)α(k)

∫ η0

0
dη SS

P (η, k)
jℓ(kr)

(kr)2
, (5.227)

and using

D
(ℓ)
m0(k̂) =

√

4π

2ℓ+ 1
Y −m

ℓ (k̂) =

√

4π

2ℓ+ 1
Y m∗

ℓ (k̂) , (5.228)
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we can write:

aS
P,ℓm = −3iℓ

4

√

√

√

√

(ℓ+ 2)!

(ℓ− 2)!

∫ d3k
(2π)3

Y m∗
ℓ (k̂)α(k)

∫ η0

0
dη SS

P (η, k)
jℓ(kr)

(kr)2
(5.229)

The expansion for (Q− iU)S(n̂) can be obtained by complex conjugation, i.e.

(Q− iU)(n̂) =
∑

ℓm

a∗
P,ℓm 2Y

m∗
ℓ (n̂) =

∑

ℓm

a∗
P,ℓm −2Y

−m
ℓ (n̂)

=
∑

ℓm

a∗
P,ℓ,−m −2Y

m
ℓ (n̂) . (5.230)

There is no reality condition here holding true for the aP,ℓm as the one holding true for

the aT,ℓm, because Q+ iU is not real and is not a scalar. It is thus convenient to define

the following combinations:

aE,ℓm ≡ −(aP,ℓm + a∗
P,ℓ,−m)/2 , aB,ℓm ≡ i(aP,ℓm − a∗

P,ℓ,−m)/2 , (5.231)

because the first has parity (−1)ℓ whereas the second (−1)ℓ+1. Thus Q ± iU can be

expanded as:

(Q± iU)(n̂) =
∑

ℓm

(−aE,ℓm ∓ iaB,ℓm) 2Y
m

ℓ (n̂) . (5.232)

Now, if we compute aS∗
P,ℓm, we obtain:

aS∗
P,ℓm = −3(−i)ℓ

4

√

√

√

√

(ℓ+ 2)!

(ℓ− 2)!

∫ d3k
(2π)3

Y −m∗
ℓ (k̂)α(−k)

∫ η0

0
dη SS

P (η, k)
jℓ(kr)

(kr)2
, (5.233)

since α(k)∗ = α(−k) because of the reality condition of the power spectrum. Changing

the integration variable to k and using the parity of the spherical harmonic:

Y −m∗
ℓ (−k̂) = (−1)ℓY −m∗

ℓ (k̂) , (5.234)

we can finally conclude that:

aS
P,ℓm = aS∗

P,ℓ,−m , (5.235)
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and therefore scalar perturbations only affect the E-mode, i.e.

aS
E,ℓm = −aS

P,ℓm , aS
B,ℓm = 0 . (5.236)

This means that, if the B-mode was detected, it would be a clear indication of the

existence of primordial gravitational waves. From Eq. (5.229) we can then obtain the

scalar contribution to the EE spectrum. Assuming adiabatic Gaussian perturbations:

CS
EE,ℓ =

9

64π

(ℓ+ 2)!

(ℓ− 2)!

∫ dk

k
∆2

R

∣

∣

∣

∣

∣

∫ η0

0
dη SS

P (η, k)
jℓ(kr)

(kr)2

∣

∣

∣

∣

∣

2

(5.237)

Using instead Eq. (5.176) we can compute the cross-correlation TE multipole coefficients:

CS
T E,ℓ = −3

4

√

√

√

√

(ℓ+ 2)!

(ℓ− 2)!

∫ dk

k
∆2

RΘℓ(k)
∫ η0

0
dη SS

P (η, k)
jℓ(kr)

(kr)2
(5.238)
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Chapter 6

CνB and LSS

On peut braver les lois humaines, mais non résister aux lois naturelles

(One can challenge human laws, but not the natural ones)

—Jules Verne, Vingt mille lieues sous le mers

In this Chapter I solve exactly some of the equations that we found in Appendix ??,

using some approximations. In particular, we can distinguish 4 cases of evolution:

1. On super-horizon scales,

2. In the matter-dominated epoch,

3. In the radiation-dominated epoch,

4. Deep inside the horizon,

for which it is possible to perform analytic calculations and thus gain a clearer physical

insight. My scope is to understand the shape of the matter power spectrum, plotted in

Fig. 30 from the analysis of the SDSS DR5 (Data Release 5) performed in [143]. Since

we already know the form of the primordial power spectrum, the above task amounts

to determine the matter, CDM plus baryons, transfer function. It must be noted that

the data points in Fig. 30 are derived from the observation of the distribution of galaxies

in the sky and hence provide information on the galaxy density contrast δg, which is in

general a biased tracer of the underlying distribution of matter in the sense that the

galaxy correlation function is not equal to the total matter correlation function [87]. At

low redshift this bias is usually considered as a constant

δg = bδm , (6.1)
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with δm being the matter density contrast (baryonic plus CDM), but for larger redshift it

might be a function of redshift and of the wavenumber, i.e. b = b(k, z). Beyond the cosmic

variance affecting in a relevant way any large-scale observation, the determination of the

power spectrum is also afflicted by another noise, which is called shot noise and is due to

the fact that δg is given by a discrete distribution (that of galaxies) tracing a continuous

one (that of the underlying matter). Finally, spectra such as that in Fig. 30 are 3-d, in the

sense that they are computed from the spatial distribution of galaxies. While determining

the angular positions on the celestial sphere is not complicated, the only direct measure of

distance that we have is the redshift. It is possible, of course, to transform the redshift

into an actual distance (a proper distance, for example) through the cosmological model

that we want to test, but determining redshift is time-consuming, especially if it is done

via spectroscopy, and introduces extra errors due to peculiar motions and to photometry

(if z is determined photometrically). Hence, it is perhaps more convenient to work with a

2-d power spectrum, the angular one w(θ), since angular positions on the celestial sphere

are easily, precisely and rapidly determined.

6.1. Evolution on super-horizon scales

A given comoving wavenumber k is super-horizon at a certain conformal time η, if

kη ≪ 1 (6.2)

Since usually H ∝ 1/η, the above condition amounts to:

k ≪ H (6.3)

which can be rewritten for the physical scale as follows:

k

a
≪ H (6.4)

The super-horizon regime is the same as that used in [113] and [38], where primordial

modes are investigated. The main difference with what we are going to see here is that we

do not limit ourselves to the radiation-dominated epoch, but investigate what happens

through radiation-matter equality and also through matter-DE equality. Thus, the above

conditions can be written as follows in the epochs of interest:

k ≪ H =
1

η
⇒ kη ≪ 1 , (6.5)
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Figure 30 – Matter power spectrum, from [143].

during the radiation-dominated epoch (for which a ∝ η),

k ≪ H =
2

η
⇒ kη ≪ 2 , (6.6)
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during the matter-dominated epoch (for which a ∝ η2) and

k ≪ H =
HΛ

1 +HΛ(η0 − η)
, (6.7)

for the Λ-dominated era. This is similar to the inflationary phase, but with η > 0, hence

the above expression for the conformal Hubble factor is:

δ′
γ = −4Φ′ , δ′

ν = −4Φ′ , δ′
c = −3Φ′ , δ′

b = −3Φ′ , (6.8)

the Poisson equation, It is as follows:

3

H (Φ′ − HΨ) +
k2

H2
Φ =

3

2ρtot

(ρcδc + ρbδb + ργδγ + ρνδν) , (6.9)

where we put in evidence the k2/H2 factor that we are going to neglect, and the anisotropic

stress equation:

k2(Φ + Ψ) = −32πGa2ρνN2 . (6.10)

Note that we have neglected the photon quadrupole contribution. It is an approximation

motivated by the fact that before recombination the tight coupling with electrons washes

out Θ2, whereas after radiation-matter equality Rγ becomes rapidly (∝ 1/a ∝ 1/η2)

negligible. When matter dominates, also Rν is negligible, so we expect the potentials to

become equal. Since our objective here is to perform an analytic calculation, we assume

already Φ = −Ψ. This is incorrect, strictly speaking, when considering the radiation-

matter domination transition but it is fine when considering the matter-DE one. Therefore,

let us rewrite Eq. (6.9) as follows:

3H (Φ′ + HΦ) =
3H2

2ρtot

(ρcδc + ρbδb + ργδγ + ρνδν) . (6.11)

This equation holds true also in presence of DE, provided that the latter does not cluster

(e.g. it is Λ).

6.1.1 Evolution through radiation-matter equality

In presence of radiation and matter only, Friedmann equation can be written as

follows:

H2 =
8πGa2

3
(ρm + ρr) =

8πG

3
ρm

(

1 +
1

y

)

, (6.12)
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where we have grouped together the species which evolve in the same way and indicated

them with a subscript r, i.e. radiation (photons and neutrinos) and with a subscript m,

i.e. matter (CDM and baryons). We have also employed the definition:

y ≡ ρm

ρr

=
a

aeq

, (6.13)

where aeq is the equality scale factor. Assuming adiabaticity, i.e.

δc = δb =
3

4
δγ =

3

4
δν ≡ δm . (6.14)

Rewriting Eq. (6.11) and using y as independent variable, we can see that:

y
dΦ

dy
+ Φ =

4 + 3y

6(y + 1)
δm . (6.15)

We are looking now for a closed equation for Φ. Therefore, differentiate Eq. (6.15) with

respect to y and use δ′
m = −3Φ′ in order to find:

d2Φ

dy2
+

(7y + 8)(3y + 4) + 2y

2y(y + 1)(3y + 4)

dΦ

dy
+

1

y(y + 1)(3y + 4)
Φ = 0 (6.16)

Quite unexpectedly, the above equation (6.16) can be solve exactly. Indeed, using the

following transformation [91]:

u ≡ y3Φ√
1 + y

, (6.17)

we can see that

d2u

dy2
+

[

−2

y
+

3

2(y + 1)
− 3

3y + 4

]

du

dy
= 0 . (6.18)

Integrate once Eq. (6.18) and therefore:

ln
du

dy
= C1 + 2 ln y − 3

2
ln(y + 1) + ln(3y + 4) , (6.19)

where C1 is an integration constant. By exponentiating and integrating again show that:

y3Φ√
1 + y

= A
∫ y

0
dy
y2(3y + 4)

(1 + y)3/2
, (6.20)
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where A is an integration constant related to C1 and assume that y3Φ → 0 for y → 0.

Solving the above integration:

Φ(y) =
ΦP

10y3

(

16
√

1 + y + 9y3 + 2y2 − 8y − 16
)

, (6.21)

where ΦP is the primordial gravitational potential. From the above solution we see that

for y → ∞ (which here means deep into the matter-dominated epoch) the gravitational

potential drops of 10%, i.e.

Φ → 9

10
ΦP , for y → ∞ . (6.22)

In Fig. 31 we display the evolution of Φ/ΦP as function of y, as given by Eq. (6.22).

Figure 31 – Evolution of the gravitational potential Φ on super-horizon scales (k = 0)
through radiation-matter equality. From Eq. (6.22).

It can be shown that Φ is constant on super-horizon scales for any background evolution

with w 6= −1 constant and for adiabatic perturbations [134]. Setting Φ = −Ψ, we can see

that:

Φ′′ + 3H
(

1 + c2
ad

)

Φ′ +
[

2H′ + H2
(

1 + 3c2
ad

)]

Φ + k2c2
adΦ = −4πGa2Γ . (6.23)
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where we have defined c2
ad ≡ P ′/ρ′ as the adiabatic speed of sound. We can see that

this equation can be cast as follows:

u′′ +

(

k2c2
a − θ′′

θ

)

u = −a2(ρ+ P )−1/2Γ (6.24)

where

u ≡ Φ

4πG(ρ+ P )1/2
, θ ≡ 1

a

(

ρ

ρ+ P

)1/2

. (6.25)

It is clear that the above transformation cannot treat the cosmological constant, for which

P = −ρ. For k = 0 and Γ = 0 (adiabatic perturbations) its general solution is:

u = C1θ + C2θ
∫ dη

θ2
. (6.26)

Consider a single fluid model P = wρ, with w constant and different from −1. Show, from

solving the Friedmann equation, that:

a = (η/η0)
2/(1+3w) , (6.27)

where w 6= −1/3 (in this case the solution grows exponentially with the conformal time).

Therefore:

θ
∫ dη

θ2
∝ a

H , (6.28)

and thus we can see that Φ is constant. Hence the 9/10 drop of Φ between the radiation-

dominated era and the matter-dominated one can be extended to any kind of adiabatic

fluid with w 6= −1 constant, using the constancy of R on large scales. See e.g. [131].

Indeed, we have

R = Φ + H Φ′ − HΨ

4πGa2(ρ+ P )
= Φ +

2

3

H−1Φ′ + Φ

1 + w
. (6.29)

Now, assume that w changes from a constant value wi to another constant value wf . For

each of the two cases Φ is a constant, Φi and Φf , respectively. Then, taking advantage of

the constancy of R, we can say that:

Φi +
2

3

Φi

1 + wi

= Φf +
2

3

Φf

1 + wf

, (6.30)
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i.e

Φf = Φi
5 + 3wi

5 + 3wf

1 + wf

1 + wi

, (6.31)

with which we can easily check the result of Eq. (6.22).

6.1.2 Evolution in the Λ-dominated epoch

As already mentioned, we cannot use the above formulae for the case of greatest

interest, which is for w = −1, i.e. the cosmological constant. In this case, we have to

start directly from Eq. (6.23). Since P = −ρ and constant, then P ′ = 0 and thus cad = 0.

Using Eq. (6.7) into Eq. (6.23) with cad = 0 and Γ = 0, we can see that:

Φ′′ +
3HΛ

1 +HΛ(η0 − η)
Φ′ +

3H2
Λ

[1 +HΛ(η0 − η)]2
Φ = 0 . (6.32)

Note that η does not go to infinity, but to a maximum value η∞ = η0 − 1/HΛ for which

the scale factor diverges. Moreover, note that this equation, and its solution, are valid

also for small scales because for cad = 0 the k-dependence is suppressed. We can find

the relation between the cosmic time t and the conformal time using Eq. (6.7) and show

that η∞ = η0 − 1/HΛ corresponds to an infinite t. Change variable to the scale factor in

Eq. (6.32), and show that:

d2Φ

da2
+

5

a

dΦ

da
+

3

a2
Φ = 0 . (6.33)

Solve this equation, using a power-law ansatz, and show that:

Φ = C1a
−1 + C2a

−3 . (6.34)

Hence, when Λ dominates, Φ is not constant on super-horizon scales but vanishes rapidly,

as Φ ∝ 1/a or Φ ∝ 1 +HΛ(η0 − η).

6.1.3 Evolution through matter-DE equality

In order to study the transition between the matter-dominated epoch and the

DE-dominated one, we consider Eq. (6.11) neglecting radiation:

3H (Φ′ + HΦ) =
3H2ρm

2ρtot

δm , (6.35)
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where we have already considered adiabatic perturbations. Now, let us introduce the

following variable:

x ≡ ρx

ρm

=
ρ̃(a/ax)−3(1+wx)

ρ̃(a/ax)−3
=
(

a

ax

)−3wx

, (6.36)

where ρx is a DE component with equation of state wx, which we assume constant, and

ax is the scale factor at matter-DE equivalence, for which both the densities are equal to

ρ̃. Note that wx < −1/3, in order to have a useful DE (it has to produce an accelerated

expansion) and recall that, in order for Eq. (6.35) to be valid, DE must not cluster.

Following the same steps which brought us to Eq. (6.16), find a closed equation for Φ,

using x as independent variable, we obtain:

d2Φ

dx2
+

6wx(x+ 1) − 2x− 5

6wxx(x+ 1)

dΦ

dx
− 1

3wxx(x+ 1)
Φ = 0 . (6.37)

This equation can be cast as a hypergeometric equation and thus solved exactly [147].

Only one of the two independent solutions is well-behaved for x → 0, i.e. is a constant:

Φ ∝ −2wx +
4wx(1 + x)

5
2F1

(

1, 1 − 1

3wx

, 1 − 5

6wx

,−x
)

→x→0 −6wx

5
. (6.38)

The integration constant has to be picked in order to match with 9ΦP/10. In Fig. 32 we

display the evolution of Φ, computed for wx = −1.5,−1,−0.5 from Eq. (6.38). In Fig. 33

we display the evolution of the potentials Φ (solid line) and −Ψ (dashed-line) for the

ΛCDM model with adiabatic initial condition using CLASS. The wavenumber chosen here

is k = 10−4 Mpc−1, which corresponds to a scale larger than the horizon today and hence

which spent the whole evolution outside the horizon. Note how the two potentials display

a difference at early times, due to the presence of neutrinos, which are of course taken

into account in CLASS.

The investigation of the evolution of scales larger than the horizon today is not

very useful because they are not observable. However, the scales that we do observe

today were outside the horizon in the past. We shall see in the next section that in

the matter-dominated regime the gravitational potential Φ is constant at all scales, even

through horizon-crossing, and thus it is interesting to know the behaviour of super-horizon

modes (the same behaviour is not shared by the density contrast). The same does not

happen when radiation dominates, but instead the gravitational potential decays and

oscillates rapidly for those scales which enter the horizon. Since the behaviour in the

radiation-dominated and in the matter-dominated epoch is so dramatically different, it

is useful to introduce the so-called equivalence wave number, i.e. the wavenumber
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Figure 32 – Evolution of the gravitational potential Φ on super-horizon scales (k = 0)
through matter-DE equality, from Eq. (6.38). The solid line represents the cosmological
constant case wx = −1, the dashed line wx = −1.5 and the dash-dotted one wx = −0.5.

Figure 33 – Evolution of the potentials Φ (solid line) and −Ψ (dashed-line) for the ΛCDM
model with adiabatic initial condition using CLASS. The wavenumber chosen here is

k = 10−4 Mpc−1.
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corresponding to a scale which enters the horizon at the equivalence epoch, and thus

defined as:

keq ≡ Heq . (6.39)

Neglecting DE, Friedmann equation in presence of radiation and matter is written as

follows:

H2 =
8πG

3
(ρm + ρr)a

2 = H2
0 (Ωm0a

−1 + Ωr0a
−2) , (6.40)

and from this we can establish that, at equivalence, the conformal Hubble parameter has

the following expression:

H2
eq =

16πG

3

ρR0

a2
eq

= 2H2
0 Ωr0(1 + zeq)2 = k2

eq , (6.41)

or, using the matter density parameter:

H2
eq =

16πG

3

ρM0

aeq

= 2H2
0 Ωm0(1 + zeq) = k2

eq , (6.42)

from which it is clear that:

1 + zeq =
Ωm0

Ωr0

. (6.43)

Using the observed values for the density parameters, we have that:

keq =

√
2H0Ωm0√

Ωr0

≈ 0.014 h Mpc−1 (6.44)

The behaviour of super-horizon modes is especially important in CMB physics. Indeed, for

a given multipole ℓ the CMB temperature correlation spectrum Cℓ is determined mostly

by those wavenumbers which satisfy:

ℓ ≈ k(η0 − η∗) = kr∗ ≈ kη0 , (6.45)

where η0 is the present conformal time, η∗ is the one corresponding to recombination

and r∗ ≡ η0 − η∗ is the comoving distance to recombination. The last approximation

is motivated by the fact that, using CLASS and the ΛCDM model, η∗ ≈ 3 × 102 Mpc

whereas η0 ≈ 104 Mpc. The above expression can be manipulated as follows:

ℓ ≈ kη
η0

η
≈ kη

1√
a
, (6.46)



162

where η is a generic past conformal time in the matter-dominated epoch and, for this

reason, we have used a ∝ η2. So, e.g. at radiation-matter equality, i.e. a ≈ 10−4, the

super-horizon scales kη < 1 contribute to the monopoles ℓ / 100 and at recombination

a∗ ≈ 10−3, ℓ / 30.

6.2. The matter-dominated epoch

Let us now neglect completely radiation. Being no photon and neutrino quadrupoles,

then Φ = −Ψ and since matter dominates, δPtot = 0, such that, with a closed equation for

Φ, we obtain:

Φ′′ + 3HΦ′ + 2H′Φ + H2Φ = −4πGa2δPtot = 0 , (6.47)

which can be solved exactly since, being a ∝ η2, we have:

Φ′′ +
6

η
Φ′ = 0 . (6.48)

The general solution is:

Φ(k, η) = A(k) +B(k)(kη)−5 = A(k) + B̂(k)a−5/2 (6.49)

where A(k), B(k) and B̂(k) are functions of k, being the latter equal to B times the

proportionality factor between the conformal time and the scale factor, which are related

by a ∝ η2. We have kept a kη dependence above because it is dimensionless, as Φ, A and

B are. Now, let us neglect the decaying mode (kη)−5 since it disappears very fast. The

important result here is that the gravitational potential is constant at all scales, through

horizon crossing, during matter domination. We shall see a very different behaviour when

radiation dominates. Hence, provided that we are deep into the matter-dominated epoch,

at large scales, when kη < 1, we can match the results for Φ of this section and the

previous one and see that:

A(k < 1/η) =
9

10
ΦP(k) , (η > ηeq) . (6.50)

So, the gravitational potential Φ, for those scales which enter the horizon during the

matter dominated epoch, is a constant with value:

Φ(k) =
9

10
ΦP(k) , (kηeq < 1) (6.51)

The condition kηeq < 1, which corresponds to k < keq guarantees that the mode was

outside the horizon at equivalence and hence that it entered during matter domination.

Considering the generalised Poisson equation with Φ constant, we have:



163

3H2Φ + k2Φ =
3H2

2
δm , (6.52)

where δm is the density contrast of matter, which we define here as:

δm ≡ (1 − Ωb0)δc + Ωb0δb , (6.53)

which comes from the fact that, being in the matter-dominated epoch, ρtot ∝ a−3 and

Ωc0 + Ωb0 = 1 (of course we keep on considering a spatially flat universe). We must be

careful that even in the matter-dominated epoch, but before recombination, for those

modes inside the horizon we can have that δc ≫ δb because baryons are tightly coupled

to photons and thus δb cannot grow, whereas CDM fluctuations can. For these modes,

soon after recombination, δb becomes equal to δc or, in other words, baryons fall into the

potential wells of CDM. We shall see this in more detail later. For large scales, those

which enter the horizon after recombination, we have δc = δb = δm (assuming, as usual,

adiabaticity). For the moment, let us focus on the evolution for δm. It follows immediately

that:

δm(k, η) = 2A(k)

(

1 +
k2

3H2

)

=
9ΦP(k)

5

(

1 +
k2η2

12

)

, (k < keq) . (6.54)

Therefore, δm is constant on super-horizon scales, but when a scale crosses the horizon it

starts to grow as δ ∝ η2 ∝ a, as the plot in Fig. (34) shows. Note that the first equality

holds true at any scales, but the second one only for k < keq, because only in this regime

we are allowed to use Eq. (6.50).

The power spectrum at any time during the matter dominated epoch can thus be put

immediately in relation with the primordial one:

Pδ(k, η) =
81

25

(

1 +
k2η2

12

)2

PΦ(k) , (k < keq) . (6.55)

For nS = 1 the primordial power spectrum goes as PΦ ∝ 1/k3, and thus the above matter

one grows linearly with k (when kη > 1). From the above equation we can read off the

matter transfer function, i.e.:

Tδ(k, η) =
9

5

k2η2

12
, (1/η < k < keq) . (6.56)

From this solution we can infer that the larger k is, i.e. the smaller the scale under

consideration is, the more it grows. This scenario is called bottom-up because smaller
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Figure 34 – Evolution of the matter density contrast δm normalised to the primordial
potential, in the matter-dominated era. From Eq. (6.54).

scales becomes non-linear before the larger ones. In other words, first small structures

form and then these can merge in order to form larger structures. The bottom-up scenario

is the contrary of the top-down scenario [207] by which first the largest structures form

and then fragmentise in order to form the smaller ones. In Eq. (6.56) we can appreciate

that the k-dependence and the η one are separate. The latter is proportional to η2 ∝ a

and is usually called growth factor. The separation of the k and η dependences takes

place because matter has vanishing adiabatic speed of sound and the k-dependence of

the equation governing δm comes in multiplied by the gravitational potential, which is a

constant (during matter domination). Putting to zero w, δP and the anisotropic stresses,

which are indeed vanishing for CDM and also for baryons, after recombination. Show that:

δ′′
m + Hδ′

m = −k2Ψ − 3Φ′′ − 3HΦ′. (6.57)

In the above equation, the k-dependence enters only through k2Ψ and then, in the

matter-dominated epoch we have that:

δ′′
m + Hδ′

m = k2Φ , (6.58)

with Φ constant (if we neglect already the decaying mode). The transfer function that we

have determined in this section is valid for small values of k, i.e. k < keq ≈ 0.014 h Mpc−1,
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which correspond to very large scales which we do not actually observe or for which the

errors and the cosmic variance are too large. Indeed, in Fig. 30 there are data points only

for scales larger than keq. It is necessary therefore to understand how matter fluctuations

behave during radiation-domination.

6.3. Baryons falling into the CDM potential wells

I offer here a simple calculation which should convey the idea of how important

CDM is for structure formation. This is often stated otherwise as the fact that after

recombination, baryons fall into the gravitational potential wells of CDM. As we anticipated

earlier, before recombination baryons were tight-coupled to photons in the early-times

plasma and, when they decouple and their over-densities are free to grow, in general we

have δb ≪ δc for those modes which were well inside the horizon during recombination.

Let us see this more quantitatively. In the same fashion by which we obtained Eq. (6.58),

we can write the following coupled equations for CDM and baryons:

δ′′
c + Hδ′

c = k2Φ , (6.59)

δ′′
b + Hδ′

b = k2Φ , (6.60)

of which the baryonic one is valid only after recombination. These equations are coupled

since Φ is determined by both the components. Indeed, from the Poisson equation we

have that:

(3H2 + k2)Φ =
3H2

2ρtot

(ρcδc + ρbδb) ≡ 3H2

2
δm , (6.61)

Now, the two Eqs. (6.59) and (6.60) have solutions (neglecting the decaying mode):

δc(k, η) = C1(k) +
k2η2

6
A(k) , δb(k, η) = C2(k) +

k2η2

6
A(k) , (6.62)

where we have used the constant potential solution for the potential, in Eq. (6.49) (also

here neglecting the decaying mode). Using this solution in Eq. (6.53) and comparing with

Eq. (6.54), we can conclude that:

C1(k) + Ωb0[C2(k) − C1(k)] = 2A(k) . (6.63)

For large scales kη ≪ 1 we already know that δc = δb = δm, because of adiabaticity, and

hence C1 = C2 = 2A. For small scales, at recombination δc ≫ δb because baryons were
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tightly coupled to photons and thus δb could not grow. This, combined with the crucial

fact that Ωb0 = 0.04 is small, makes δm (and the gravitational potential) dominated by

δc. Hence, again δc = δb soon after recombination, the detailed transient coming from

the decaying modes that we have neglected. In other words, baryons fall in the potential

wells already created by CDM. Without CDM, δb would grow proportionally to a, by a

factor 103 by today, being of order 10−2. This is way too small in order for account of

the structures that we observe. In Fig. 35 we plot the evolution of δc (solid line) and δb

(dashed line) for k = 1 Mpc−1 computed with CLASS. Note the oscillations in δb, which

are related to the baryon acoustic oscillations (BAO) of the matter power spectrum,

cf. the small box inside Fig. 30, but are not the same thing. The oscillations in the plot

of Fig. 35 are function of the time (scale factor) evolution, whereas those in the matter

power spectrum of Fig. 30 are function of the wavenumber k.

Figure 35 – Evolution of δc (solid line) and δb (dashed line) for k = 1 Mpc−1 computed
with CLASS.

The oscillations of Fig. 35 are caused by the tight coupling of baryons with photons before

recombination, when structure formation is impossible. On the other hand, CDM can

grow even when radiation dominates and thus, for the chosen scale k = 1 Mpc−1, the ratio

δc/δb is of about 3 orders of magnitude.

In Fig. 36 we plot again the evolution of δc (solid line) and δb (dashed line) for k = 1 Mpc−1

computed with CLASS, but this time with a negligible amount of CDM (Ωc0h
2 = 10−6).

Note how δb grows six orders of magnitude less today than in the standard case.
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Figure 36 – Evolution of δc (solid line) and δb (dashed line) for k = 1 Mpc−1 computed
with CLASS with a negligible amount of CDM (Ωc0h

2 = 10−6).

6.4. The radiation-dominated epoch

Consider now the case of full radiation dominance and neglect δc and δb as source

of the gravitational potentials. Moreover, assume adiabaticity, so that δγ = δν = δr

and neglect the neutrino anisotropic stress, so that Φ = −Ψ. Since we are deep into

the radiation-dominated epoch, then w = c2
ad = 1/3 and thus from Eq. (6.23) we can

immediately write:

Φ′′ +
4

η
Φ′ +

k2

3
Φ = 0 , (6.64)

where we have used a ∝ η. Defining

u ≡ Φη , (6.65)

the above equation becomes

u′′ +
2

η
u′ +

(

k2

3
− 2

η2

)

u = 0 . (6.66)

This is a Bessel equation with solutions j1(kη/
√

3) and n1(kη/
√

3), i.e. the spherical

Bessel functions of order 1. Since n1 diverges for kη → 0, we discard it as unphysical.
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Recovering the gravitational potential Φ and using the fact that [11]

j1(x) =
sin x

x2
− cosx

x
, (6.67)

and

lim
x→0

sin x− x cosx

x3
=

1

3
, (6.68)

we can write

Φ = 3ΦP

sin
(

kη/
√

3
)

− (kη/
√

3) cos
(

kη/
√

3
)

(kη/
√

3)3
. (6.69)

This solution shows that as soon as a mode k of the gravitational potential enters the

horizon, it rapidly decays as 1/η3 or 1/a3 while oscillating.

Figure 37 – Evolution of the gravitational potential Φ deep into the radiation-dominated
era. From Eq. (6.69).

In Fig. 6.69 we plot the evolution of the gravitational potential, according to Eq. (6.69).

Note how Φ starts to decay right after kη > 1, i.e. after horizon crossing.

The goodness of the solution (6.69) plotted in Fig. 37 can be appreciated in Fig. 38

where both Φ (solid line) and −Ψ (dashed line) are plotted. Outside the horizon the two
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Figure 38 – Evolution of the gravitational potentials Φ (solid line) and −Ψ (dashed line)
deep into the radiation-dominated era computed with CLASS for the ΛCDM model and
k = 10 Mpc−1. Adiabatic perturbations have been used and the initial values have been

normalised to that of Φ.

potentials are constant with a difference due to the neutrino fraction Rν . As soon as they

enter the horizon they rapidly decay to zero. Now, recall Eq. (6.57) that we derived for

the matter density contrast. It can be used in the radiation-dominated epoch, but only

for CDM:

δ′′
c +

1

η
δ′

c = k2Φ − 3Φ′′ − 3

η
Φ′ . (6.70)

Using Eq. (6.64), we can write

δ′′
c +

1

η
δ′

c = 2k2Φ +
9

η
Φ′ ≡ S(k, η) . (6.71)

As stated at the beginning of the section, we are so deep into the radiation-dominated

epoch that the matter density contrast does not contribute to the gravitational potential

but only feels it. Using Eq. (6.69) with x ≡ kη as new independent variable, the function

S(x) has the following form:

S(x)

k2ΦP

=
9
[

(27x− 2x3) cos
(

x/
√

3
)

+
√

3 (5x2 − 27) sin
(

x/
√

3
)]

x5
, (6.72)
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and the equation for δc becomes:

d

dx

(

x
dδ

dx

)

= 9ΦP

[

(27x− 2x3) cos
(

x/
√

3
)

+
√

3 (5x2 − 27) sin
(

x/
√

3
)]

x4
. (6.73)

The homogeneous part of this equation has a simple solution:

δhom = C1 + C2 ln x , (6.74)

i.e. a constant C1 times a logarithmic contribution. A particular solution is obtained by

integrating twice the right-hand side, thus obtaining:

δpart =
9ΦP

[

−x3Ci
(

x/
√

3
)

+
√

3 (x2 − 3) sin
(

x/
√

3
)

+ 3x cos
(

x/
√

3
)]

x3
, (6.75)

where Ci(z) is the cosine integral function, defined as

Ci(z) ≡ −
∫ ∞

z
dt

cos t

t
. (6.76)

The above is a particular solution, therefore the integration constants which stem from

the indefinite integration can be incorporated in C1. The general solution for δc is then:

δc = C1 + C2 ln x+
9ΦP

[

−x3Ci
(

x/
√

3
)

+
√

3 (x2 − 3) sin
(

x/
√

3
)

+ 3x cos
(

x/
√

3
)]

x3
.

(6.77)

For x → 0, we can expand the above solution as follows:

δ(x → 0) = C1 + C2 ln(x) + ΦP

[

−9 ln(x) − 9γ + 6 +
9 ln(3)

2

]

+ O
(

x2
)

, (6.78)

where γ is the Euler constant. Since ln x is divergent for x → 0 and we do not want δc to

diverge, we have to ask:

C2 = 9ΦP . (6.79)

Moreover, we know that δc(x → 0) = 3ΦP/2 when we choose adiabatic initial conditions

(and neglect neutrinos), thus:

C1 = −9

2
ΦP [−2γ + 1 + ln(3)] . (6.80)
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Figure 39 – Evolution of δc deep into the radiation-dominated era computed from
Eqs. (6.77), (6.79) and (6.80) (solid line) compared with the numerical calculation per-
formed with CLASS for k = 10 Mpc−1 (dashed line). Note the semi-logarithmic scale

employed.

We plot the evolution of δc through horizon-crossing in Fig. 39.

For x ≫ 1, deep inside the horizon, we can neglect the contribution δpart to the solution

for δc since it decays rapidly. Thus, we can write the density contrast as follows:

δc = −9

2
ΦP [−2γ + 1 + ln(3)] + 9ΦP ln x = AΦP ln(Bkη) , (6.81)

where

A = 9 , B = exp

[

γ − 1

2
− ln(3)

2

]

≈ 0.62 . (6.82)

6.5. Deep inside the horizon

The last domain in which it is possible to analytically solve the equations for the

perturbations is when k ≫ H, i.e. deep inside the horizon. We shall neglect baryons in

this calculation (this is imprecise and we shall see why numerically) and assume Φ = −Ψ
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(which is a good approximation, on the basis of the results of the previous section). The

relevant equations are thus the following ones:

δ′
c + kVc = −3Φ′ , (6.83)

V ′
c + HVc = −kΦ , (6.84)

k2Φ = 4πGa2ρcδc . (6.85)

In the latter equation we have neglected all the potential terms except for the one

accompanied by k2 and we have also neglected radiation perturbations. It is not evident

why should we neglect ρrδr with respect ρcδc even when ρr ≫ ρc deep into the radiation-

dominated epoch. Neglecting δb, at least, is justified by the fact that before recombination

it behaves as the fluctuation in radiation and afterwards as that in CDM, while being Ωb

always subdominant. An explanation of why we can neglect ρrδr is offered by Weinberg

who shows that new modes appear (dubbed fast) which rapidly decay and oscillate [197].

He also takes into account baryons at first order in Ωb0. Using again the variable y ≡ a/aeq

and manipulate the three equations above in order to obtain a single second-order equation

for δc:

d2δc

dy2
+

2 + 3y

2y(y + 1)

dδc

dy
− 3

2y(y + 1)
δc = 0 . (6.86)

This equation is known as Mészáros equation [125]. A solution can be found at once,

multiplying by 2y(y + 1):

2y(y + 1)
d2δc

dy2
+ 2

dδc

dy
+ 3y

dδc

dy
− 3δc = 0 . (6.87)

A linear ansatz δc ∝ y kills the second derivative and the last two terms on the left hand

side. Therefore, the simple solution we looked for is:

D1(y) ≡ y +
2

3
(6.88)

This is also the growing mode. For y ≪ 1, i.e. before matter-radiation equality, δ is

practically constant, whereas for y ≫ 1 we have the known growth linear with respect to

the scale factor. In order to find the other independent solution say D2, we can use the

Wronskian:

W (y) = D1
dD2

dy
− dD1

dy
D2 . (6.89)
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The Wronskian satisfies the simple first-order differential equation:

dW

dy
= − 2 + 3y

2y(y + 1)
W , (6.90)

from which one gets

W =
1

y
√

1 + y
. (6.91)

From the very definition of the Wronskian in Eq. (6.89), we can write a first-order equation

also for D2, which is the following:

(y + 2/3)2 d

dy

(

D2

y + 2/3

)

=
1

y
√

1 + y
. (6.92)

Integrate it the result is:

D2 =
9

2

√
1 + y − 9

4
(y + 2/3) ln

(√
y + 1 + 1√
y + 1 − 1

)

. (6.93)

This mode grows logarithmically when y ≪ 1, recovering the logarithmic solution of the

previous section. It decays as 1/y3/2 for y ≫ 1. The complete solution for δc on small

scales k ≫ H and through radiation-matter equality is then:

δc(k, a) = C1(k)D1(a) + C2(k)D2(a) . (6.94)

The dependence of C1 and C2 from k can be established by matching this solution with

the one of the previous section in Eq. (6.81).

6.5.1 CDM transfer function and power spectrum

As we discussed earlier and as it is clear from Fig. 30 the today observed scales

in the matter power spectrum are those for which k > keq, i.e. those which entered the

horizon before matter equality. In the last two section we have obtained exact solution for

δc deep into the radiation-dominated epoch for all scales and through radiation-matter

equality at very small scales. There is then the possibility of matching the two solutions

on very small scales and thus obtain in this regime the CDM transfer function until today.

Considering the following two solutions found in the previous sections, i.e.

δc(k, η) = AΦP(k) ln(Bkη) , (6.95)

δc(k, a) = C1(k)D1(a) + C2(k)D2(a) , (6.96)
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which are valid on very small scales, i.e. kη ≫ 1. The purpose is to find the functional

forms of C1(k) and C2(k). Using Eqs. (6.40) and (6.41), one can approximate the Hubble

parameter deep into the radiation era as follows:

H ≈ Heqaeq√
2a

, (6.97)

and solving using the conformal time, one has:

a =
Heqaeq√

2
η . (6.98)

The proportionality constant is the correct one which gives H = 1/η when substituted in

the approximated formula for H. We can thus write the logarithmic solution for δc, deep

into the radiation-dominated era, as follows:

δc(k, a) = AΦP(k) ln

(

Bk

√
2a

Heqaeq

)

. (6.99)

Introducing y ≡ a/aeq, the equivalence wavenumber keq = Heq and the rescaled wavenum-

ber:

κ ≡
√

2k

keq

=
k
√

Ωr0

H0Ωm0

=
k

0.052 Ωm0 h2 Mpc−1 (6.100)

one has:

δc(k, a) = AΦP(k) ln (Bκy) . (6.101)

Recall that this solution is valid deep into the radiation-dominated epoch, thus y ≪ 1.

At the same time, it holds true only on very small scales, i.e. kη ≫ 1. Using the above

formulae, this means:

kη = k

√
2a

Heqaeq

= k

√
2a

keqaeq

= κy ≫ 1 . (6.102)

Therefore, if we want to match radiation-domination solution with the solution of the

Mészáros equation, we need to choose a suitable ym at which performing the junction of

the two solutions such that 1/κ ≪ ym ≪ 1. Asking the equality of the two solutions and

their derivatives at ym implies to solve the following system:

AΦP ln(Bκym) = C1 (ym + 2/3) + C2D2(ym) , (6.103)

AΦP

ym

= C1 + C2
dD2

dy

∣

∣

∣

∣

∣

y=ym

. (6.104)
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Solving the above system and take the dominant contribution for ym → 0 (because the

junction condition has to be imposed for ym ≪ 1), we obtain:

C1 =
3

2
AΦP ln

(

4Bκe−3
)

, C2 =
2

3
AΦP . (6.105)

Therefore, the solution for δc valid at all time and at small scales is the following:

δc(k, y) =
3

2
AΦP ln

(

4
√

2Bκe−3
)

(y + 2/3) +
2

3
AΦPD2(y) , (κ ≫ 1) . (6.106)

We can project this solution at late times, when matter dominates and thus neglect the

decaying mode D2 and write:

δc(k, a) =
3

2
AΦP ln

(

4
√

2Be−3k

keq

)

a

aeq

, (a ≫ aeq, k ≫ keq) (6.107)

Note again the separated dependence from k and from the scale factor, being the growth

function D(a) = a. This allows us to write the transfer function for CDM as follows, using

Eq. (6.42) in order to eliminate aeq:

Tδ(k) =
Ak2

eq

2H2
0 Ωm0

ln

(

4
√

2Be−3k

keq

)

D(a) , (a ≫ aeq, k ≫ keq) (6.108)

Recall that the factor 3ΦP/2 is the adiabatic initial condition on δc and thus enters the

primordial power spectrum. The above transfer function can be generalised including DE,

if the latter does not cluster. If it is the case, as for the cosmological constant, its effect

enters only the growth factor and in keq since, being another component and having the

fixed total Ωr0 + Ωm0 + ΩΛ = 1, the relative amount of radiation and matter has to change

(usually the amount of radiation is fixed) and thus keq changes. We can also determine

the transfer function for the gravitational potential Φ at late times. From Eq. (6.85) we

have that:

k2Φ = 4πGa2ρmδm =
3H2

0 Ωm0

2a
δm , (6.109)

where we have included baryons, since we are considering late times and we have seen that

after recombination δb = δc. We are neglecting any DE contribution in the expansion of

the universe and considering a radiation plus matter model. Hence, Ω0 ≈ 1. We thus have

for the gravitational potential, combining Eqs. (6.107) and (6.109):

Φ(k) =
9Ak2

eq

8k2
ΦP(k) ln

(

4
√

2Be−3k

keq

)

, k ≫ keq (6.110)
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The transfer function for the gravitational potential is usually normalised to 9ΦP/10 and

therefore:

TΦ(k) =
5Ak2

eq

4k2
ln

(

4
√

2Be−3k

keq

)

, k ≫ keq (6.111)

Using Ωr0h
2 = 4.15 × 10−5 in Eq. (6.44) and defining

q ≡ k × Mpc

Ωm0h2
, (6.112)

we can cast the above transfer function in the following form:

TΦ(k) =
ln (2.40q)

(4.07q)2
(6.113)

See also [200, pag. 310]. We have written the transfer function as in Eq. (6.113) because

it is simpler to compare it with the numerical fit of Bardeen, Bond, Kaiser and Szalay

(BBKS) of the exact transfer function [22], which is the following:

TBBKS(k) =
ln (1 + 2.34q)

2.34q

[

1 + 3.89q + (16.2q)2 + (5.47q)3 + (6.71q)4
]−1/4

, (6.114)

and see that for large q it goes as ln(2.34q)/(3.96q)2, which is in good agreement with

our analytic estimate (6.113). Given the transfer function TΦ, δm can be written, from

Eq. (6.109), as:

δm(k, a) =
2a

3H2
0 Ωm0

k2Φ =
3k2

5H2
0 Ωm0

ΦP(k)TΦ(k)a =
3k2

5H2
0 Ωm0

ΦP(k)TΦ(k)D(a) . (6.115)

In the last equality we have recovered the growth factor D(a) in order to provide a more

general formula. From this solution we can obtain the power spectrum for δm starting

from the primordial one for Φ, i.e.

Pδ(k, a) =
9k4

25H4
0 Ω2

m0

PΦ(k)T 2
Φ(k)D2(a) . (6.116)

Using Φ = −Ψ, since we are neglecting neutrinos, ΦP = 2R/3 and thus the primordial

power spectrum of Φ can be traded with the R one, and we get:

Pδ(k, a) =
4k4

25H4
0 Ω2

m0

PR(k)T 2
Φ(k)D2(a) . (6.117)
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We can write the explicit dependence of the primordial power spectrum of k as follows:

Pδ(k, a) =
8π2k

25H4
0 Ω2

m0

AS

(

k

k∗

)nS−1

T 2
Φ(k)D2(a) (6.118)

The power spectrum Pδ(k, a) can be determined through the observation of the distribution

of galaxies in the sky. Therefore, through the above formula we can probe many quantities

of great interest such as the primordial tilt of the power spectrum. Now, let us make a

plot of the power spectrum today (z = 0) using CLASS and fixing all the parameters to

the ΛCDM best fit values except for Ωm0, which we let free. We show in Fig. 40 the shape

of the matter power spectrum for Ωm0 = 0.1 (blue) and Ωm0 = 0.3 (yellow), Ωm0 = 0.7

(green) and Ωm0 = 0.99 (red).
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Figure 40 – Matter power spectra for (left to right, in case no colours are available)
Ωm0 = 0.1 (blue), Ωm0 = 0.3 (yellow), Ωm0 = 0.7 (green) and Ωm0 = 0.99 (red).

The first interesting feature of the power spectrum is that it has a maximum. This

maximum takes place roughly at keq for the following reason: entering the horizon at

equivalence is the best time to do that in order for a matter fluctuation to grow more. In

fact, as we have seen, scales that entered the horizon earlier (i.e. k > keq) are suppressed

because radiation is dominating and that δ grows logarithmically during this epoch, cf.

Eq. (6.77). These are the scales of great observational interest, as can be appreciated

from Fig. 30. On the other hand, the scales that entered after the equivalence grow

proportionally to a, cf. Eq. (6.54). Evidently, the scale which entered at equivalence

has had more time to grow than all the others, hence the the maximum or turnover in

the power spectrum. The second interesting feature of the power spectrum is that its

maximum is shifted to the left when we reduce Ωm0. This means that the equivalence
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wavenumber keq is smaller when Ωm0 is smaller and this can be immediately seen from

Eq. (6.44) if we fix Ωr0. Remarkably, observation favours the line for Ωm0 = 0.3 of Fig. 40,

as can also be seen from Fig. 30. Since the radiation content is very well established from

CMB observation (and our knowledge of neutrinos) as well as the spatial flatness of the

universe and H0 are also well-determined, the only way to make the total is to add a

further component, which clearly is DE. The important point here is that the necessity for

DE can already be seen by analysing the large scale structure of the universe (together with

CMB) and this was realised well before type Ia supernovae started to be used as standard

candles [117], [60]. For completeness, in Fig. 41 we plot with CLASS the matter power

spectrum at z = 0 for the ΛCDM model, with different choices of the initial conditions.
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Figure 41 – Matter power spectra for different initial conditions: Adiabatic (blue), Baryon
Isocurvature (yellow), CDM Isocurvature (green), Neutrino density Isocurvature (red),

and Neutrino velocity Isocurvature (purple).

The transfer function thus tells us how the shape of the primordial power spectrum is

changed through the cosmological evolution and through the analytic estimates that we

have done in this Chapter we understood that the k-dependence is set up during radiation-

domination. However, we have made two important assumptions in our calculations:

we have neglected baryons and neutrino anisotropic stress (we have taken into account

neutrinos from the point of view of the background expansion). If we aim to precise

predictions, and we have to in order to keep the pace with the increasing sophistication

of the observational techniques, we must take into account them. A more precise fitting

formula (to numerical calculations performed with CMBFAST) taking into account baryons

and neutrino anisotropic stress is given by [62].

In Fig. 42 we compare the BBKS transfer function with the numerical calculation of

CLASS, adopting Ωm0 = 0.95 while leaving all the remaining cosmological parameters as

in the ΛCDM model, except for ΩΛ which is adjusted to the value ΩΛ = 1.632908 × 10−3
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Figure 42 – Left Panel. Evolution of BBKS transfer function of Eq. (6.114) (solid line)
compared with the numerical computation of CLASS, using Ωm0 = 0.95 (which means
negligible DE). Right Panel. Ratio between the numerical result and the BBKS transfer

function.

in order to match the correct budget of energy density. So, in practice, we are neglecting

DE. As can be appreciated from the plots, the BBKS transfer function overestimates of

about 5% the correct transfer function for scales k & 0.1 h Mpc−1, see also [57, pag. 208].

The reason is that baryons behave like radiation before decoupling, because of their tight

coupling due to Thomson scattering. Therefore, they contribute further to thwart scales

entering the horizon before the equivalence.

Figure 43 – Left Panel. Ratio between the numerical result computed with CLASS
assuming the ΛCDM model, and the BBKS transfer function with Ωm0h

2 = 0.12038. Right
Panel. Ratio between the numerical result computed with CLASS assuming the ΛCDM

model, and the BBKS transfer function with Ωm0 = 1.

In Fig. 43 we display the ratio between the numerical transfer function computed with

CLASS for the ΛCDM model and the BBKS transfer function in two cases. In the left

panel, the same matter density parameter of the ΛCDM model is used for both the transfer

functions. In the right panel, we used the BBKS transfer function with Ωm0 = 1. The

latter choice was made in order to reproduce the plot of [57, pag. 208] and thus to show

the very large correction due to the cosmological constant which, if not taken into account,



180

leads to a 80% error at the scale k = 0.1 h Mpc−1. When Λ is taken into account properly,

the BBKS transfer function still overestimates the correct transfer function of at least a

10% on small scales, which implies an imprecision of 1% in the power spectrum (since this

depends on the squared transfer function). Moreover, as it is obvious since it does not

include baryons, the BBKS cannot describe the BAO, which appear as oscillations in the

transfer function at about k = 0.1 h Mpc−1 in Fig. 43.

6.5.2 The initial power spectrum

The Harrison–Zeldovich spectrum. Initially it may seem as if P (k) is a

function that can be chosen arbitrarily, but one objective of cosmology is to calculate this

power spectrum and to compare it to observations. More than 30 years ago, arguments

were already developed to specify the functional form of the initial power spectrum. At

early times, the expansion of the Universe follows a power law, a(a) ∝ t1/2 in the radiation-

dominated era. At that time, no natural length-scale existed in the Universe to which one

might compare a wavelength. The only mathemat- ical function that depends on a length

but does not contain any characteristic scale is a power law; hence for very early times

one should expect:

P (k) ∝ kns . (6.119)

Many years ago, Harrison, Zeldovich, Peebles and others argued that ns = 1, as for this

slope, the amplitude of the fluctuations of the gravitational potential are constant, i.e.,

preferring neither small nor large scales. For this reason, the spectrum (6.5.2) with ns = 1

is called a scale-invariant spectrum, or Harrison–Zeldovich spectrum (see Fig. 44). With

such a spectrum, we may choose a time ti after the inflationary epoch and write:

P (k, t) = D2(t)Akns (6.120)

where A is a normalization constant that cannot be determined from theory but has to be

fixed by observations, as we will see in the following sections of this chapter.
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Figure 44 – Scale-invariant power spectrum spectrum and its suppression due to the matter
content.

6.5.3 The mass variance of the matter clustering and σ8 tension

The root mean square (rms) amplitude of mass fluctuations inside a particular

spherically-symmetric window is:

σ2
R(z) =

1

2π2

∫ ∞

0
P (k, z)W 2

R(k)dk, (6.121)

where P(k,z) is the power spectrum and WR(k) is the window function with R symbolizing

a physical scale. The two most popular choices for window functions are the real-space

spherical top-hat of radius R:

WR(k) =
3

(kR)3
[sin(kR) − kR cos(kR)] (6.122)

MR =
4π

3
ρcΩ0R

3 (6.123)
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and the Gaussian window of scale length R:

WR(k) = exp

(

−(kR)2

2

)

(6.124)

MR = (2π)3/2 ρcΩ0R
3 (6.125)

where MR is the mass included in the window. One can write the equation (6.126) as:

σ2
R(z) = D2(z)σ2

R(z = 0) (6.126)

assuming the normalization D(z = 0) = 1 for the linear growth function D(z) [345]. From

the analyses of diverse cosmological tracers it is common to perform the measurements at

scales of R = 8Mpc/h, that is, σ8,0 ≡ σ8(z = 0).

The standard Λ Cold Dark Matter cosmological model provides an amazing fit to

current cosmological data. However, some statistically-significant tensions in cosmological

parameter estimations emerged between the Planck experiment, measuring the Cosmic

Microwave Background (CMB) anisotropies, and other low-redshift cosmological probes.

In addition to the long standing Hubble constant H0 disagreement, which we analyze

in the chapter 2, a tension of the Planck data with weak lensing measurements and

redshift surveys has been reported, about the value of the matter energy density Ωm,

and the amplitude or rate of growth of structure (σ8, fσ8), where is the growth rate,

which represents a measure of the matter clustering evolution from the primordial density

fluctuations to the large-scale structures observed today. Although this tension could be

due to systematic errors, it is worthwhile to investigate the possibility of new physics

beyond the standard model. The tension can be visualized in the σ8 vs Ωm plane (see

Fig. 45), and is often quantified using the following parameter:

S8 ≡ σ8

√

Ωm

0.3
, (6.127)

along the main degeneracy direction of weak lensing measurements. This can be also

related to fσ8(z = 0), measured by galaxy redshift space distortions (RSD) [346, 347],

where f = [Ωm(z)]0.55 approximates the growth rate.

The mismatch between the high S8 value estimated by Planck assuming ΛCDM

(grey contour in Fig. 45), S8 = 0.834±0.016, and the lower value preferred by cosmic shear

measurements, it is known as the S8 tension. This tension is above the 2σ level with KiDS-

450 [349–352] (S8 = 0.745 ± 0.039) and KiDS-450+2dFLenS [353] (S8 = 0.742 ± 0.035),
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Figure 45 – 68% CL and 95% CL contour plots for σ8 and Ωm(from Ref. [348]).
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with KiDS+VIKING-450 (KV450) [354] (S8 = 0.737+0.040
−0.036), with DES [355, 356] (S8 =

0.783+0.021
−0.025), and with CFHTLenS [357–359]. Recently, KiDS-1000 [348] reported a ∼ 3σ

tension (S8 = 0.766+0.020
−0.014, red contour in Fig. 45) with Planck. This is already obvious

from cosmic shear alone [360], but when combined with galaxy clustering, the degeneracy

breaking between σ8 and Ωm does not change the tension level. Therefore, the combined

analysis helps in pointing out that the tension, at 3.1σ in this case, is driven by σ8 rather

than Ωm. In addition, there is the Lyman-α result [361], a late time probe probing scales

similar to weak lensing, completely in agreement with a lower S8 value and in tension at

∼ 2.6σ with Planck. The tension becomes 3.2σ if we consider the combination of KV450

and DES-Y1 [362,363] or 3.4σ for BOSS+KV450 [364] (S8 = 0.728 ± 0.026, blue contour

in Fig. 45). Preferring a higher value for the S8 parameter there is also the measurement

from the first-year data of HSC SSP [365], for which S8 = 0.804+0.032
−0.029 (see Fig. 46), but

also KiDS-450+GAMA [366] finding S8 = 0.800+0.029
−0.027. Finally, in agreement with a lower

value S8 = 0.703±0.045 there is an estimate from the BOSS Galaxy Power Spectrum [367].

It has been pointed out in [368] that this tension could be related to the excess of lensing

measured by Planck, mimicking a larger S8. However, also ACT+WMAP [369] find a

large S8 = 0.840 ± 0.030 even if it does not see a peculiar value for the lensing amplitude,

while SPTpol [370] and the Planck CMB lensing [371] measurements prefer a lower value.

Another possibility is the misuse of the units h−1Mpc in observational cosmology in [372].

It might be worth mentioning that, while weak lensing analyses are carried out with a

blinding procedure for KiDS, DES and HSC, the CMB analyses are either not blind or

only partially blind. The H0 disagreement is correlated to the σ8 problem, indeed the

solutions proposed to alleviate the first one, are exacerbating the CMB tension with the

lower σ8 values obtained from more direct measurements, such as galaxy clusters using

the Sunyaev-Zel’dovich effect [373–375], i.e. measuring the number of clusters of a certain

mass M over a range of redshift.

For example, late time transitions preferring a higher H0 value, if they match the CMB

data, prefer a lower Ωm as well, to preserve the well measured value of Ωmh
2, known as

geometric degeneracy. This effect produces a modification of distances to sources, the

growth of structure, and of the sound horizon and CMB anisotropies [376], and usually

results in higher σ8 than for ΛCDM because of an extended era of matter domination.

However, also early-time dark energy solutions of the H0 tension increase σ8 because they

need a higher primordial curvature perturbation amplitude to offset the damping effect of

the unclustered component. Therefore, because of the mutual effects and correlations, it

is important to perform a conjoined analysis, fitting with a single model a full array of

data [377–380], and not just one parameter alone. At the same time, if a model solves

the S8 tension (the z = 0 value), the growth history at different redshift, by plotting

fσ8(z) directly against H(z), should be checked [381,382], because conjoint history can

deviate significantly at intermediate scales. Hence, any solution to the S8 tension should
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Figure 46 – Whisker plot showing the 68% error bars on S8 (from Ref. [348]).
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pass other cosmological tests, i.e. it should simultaneously fit the expansion and growth

histories probed by Baryon Acoustic Oscillations (BAO), RSD-lensing cross correlations,

galaxy power spectrum shape and void measurements [383].

There are many papers investigating this tension [368, 372, 384–414], but the solutions

proposed are not enough to put in agreement all the cosmological available data [415–417].

We can distinguish the following categories:

• Axion monodromy inflation [404].

• Extended parameter spaces [368,385,386,388,389] with AL > 1 [418], i.e. using the

phenomenological lensing parameter as a consistency check and determining whether

it is different from unity [453].

• Active and Sterile Neutrinos [402,403].

• Interacting dark energy models, where the energy flows from the dark matter to the

dark energy [390,391].

• Decaying dark matter [410,411,420,421], or Cannibal dark matter [412].

• Minimally and non-minimally coupled scalar field models as possible alternatives for

dark energy [398].

• Modified Gravity models [399,400,422,423].

• Running vacuum models in which Λ = Λ(H) is an affine power-law function of the

Hubble rate [392,393,424–429].

• Quartessence, a single dark component mimicking both dark matter and dark

energy [395].

Along with the above possibilities to resolve this tension, I will present the possibility of

using lepton asymmetry in order to resolve it, since this introduces new relativistic degrees

of freedom, which increases the radiation energy density in the early universe. So in this

way I will show in the Chapter 7, that we can alleviate the tension of σ8 and H0.

6.6. Massive neutrino impact on the power spectrum

Standard Model neutrinos are initially relativistic, following a thermal distribution

after decoupling from the primordial plasma when the Universe had a temperature of

around kBT ≈ 1MeV . The neutrino temperature decreases as the scale factor grows,

until their rest-mass energy dominates and they become indistinguishable from cold dark

matter. For a neutrino of mass mν the transition occurs at:

1 + z ≈ 1987
(

mν

1eV

)

, (6.128)

so current limits indicate a transition epoch of 120 ≤ z ≤ 460 for a normal mass hierarchy.
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This limit implies that the neutrinos were still relativistic when the CMB decoupled,

so they would be indistinguishable from massless neutrinos in the primary anisotropies.

However, higher mass neutrinos become non-relativistic sooner, which reduces the early-

time Integrated Sachs-Wolfe (ISW) effect. This gravitational redshift of the CMB photons

arises while the non-negligible radiation component causes the potentials of the density

fluctuations to evolve and affects the anisotropies on scales around the first acoustic

peak. This effect is not sensitive to masses which remain relativistic until well after

decoupling, but further information comes from probes of later-time large scale structure

(LSS) measurements. Massive neutrinos interact weakly, allowing them to free-stream out

of overdensities while relativistic, so the growth rate of matter perturbations inside the

horizon is suppressed compared to a universe with only cold dark matter. For comoving

wavenumbers k ≫ kfs, Hu et al. [430] show that the suppression of the matter power

spectrum today, P (k), is proportional to the sum of the neutrino masses:

P∑mν
(k) − P∑mν=0(k)

P∑mν=0(k)
≈ −0.07

(

∑

mν

0.1eV

)

(

Ωmh
2

0.136

)−1

, (6.129)

where the comoving free-streaming scale is given by

kfs = 0.0072
(

∑

mν

0.1eV

)1/2
(

Ωm

0.135

)1/2

h Mpc−1, (6.130)

as illustrated in Fig. 47. For current limits this scale is estimated to lie in the range

0.005 . kfs . 0.011. The suppression of small-scale power can be probed using galaxy

clustering and the gravitational lensing of galaxies. These are promising avenues for

neutrino mass measurements, although these observables are sensitive to non-linearities in

the matter power spectrum and scale-dependent galaxy and shape biases. An alternative

route is through the gravitational lensing of the CMB. Here the CMB photons are deflected

by the large-scale structure, integrated over the photon path since decoupling.
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Figure 47 – Effect of neutrino mass on matter power spectra. Fractional change of the
matter power spectrum today P (k) for different mass values of the neutrinos:

∑

mν = 0 eV
(black dotted line),

∑

mν = 0.1 eV (blue continuous line),
∑

mν = 0.2 eV (green dashed
line),

∑

mν = 0.3 eV (dashed and dotted yellow line).
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Chapter 7

Testing the properties of CνB from current

cosmological data

Based on: "Probing the properties of relic neutrinos using the cosmic

microwave background, the Hubble Space Telescope and galaxy clusters",

on.Not.Roy.Astron.Soc. 473 (2018) 4, 4404-4409.1

7.1. Main physical properties of CνB from de current data

The total radiation density energy can be parametrized (when the neutrinos are

relativistic) by

ρr =
[

1 +
7

8

(

4

11

)4/3

Neff

]

ργ, (7.1)

where the factor 7/8 appears because neutrinos are fermions. Neutrinos become non-

relativistic when their average momentum falls below their mass. In section 4.4.2, I

presented a brief description of the massive degenerate neutrinos. Some approximations

for massive neutrino have been discussed in the literature [223, 227–229]. Here, let us

follow the methodology and notation of [230], where an extension of the ultrarelativistic

fluid approximation is presented. Within the fluid approximation, the continuity, Euler,

and shear equations, in the synchronous gauge, are given by

δ̇ν = −(1 + wν)
(

θν +
ḣ

2

)

− 3
ȧ

a
(c2

eff − wν)δν + 9
(

ȧ

a

)2

(1 + wν)(c2
eff − c2

g)
θν

k2
, (7.2)

1 https://academic.oup.com/mnras/article/473/4/4404/4643131
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θ̇ν = − ȧ

a
(1 − 3c2

eff)θν +
c2

eff

1 + wν

k2δ − k2σν , (7.3)

and

σ̇ν = −3
(

1

τ
+
ȧ

a

[

2

3
− c2

g − ppseudo

3p

])

σν +
8

3

c2
vis

1 + wν

[

θν + ḣ
]

. (7.4)

In equations (7.2)-(7.4), wν = pν/ρν (which starts with wν = 1/3 at early times and drops

to wν ≃ 0 when neutrinos become nonrelativistic), c2
vis = 3wνc

2
g and

c2
g =

wν

3 + 3wν

(

5 − ppseudo

p

)

, (7.5)

where the quantity ppseudo is the so-called the pseudo-pressure. See [230] and [222] for

details of the Boltzmann hierarchy. In the application of the eqs. (7.2)-(7.4), we consider

three active neutrinos: one massive neutrino ν1 and two massless neutrinos ν2 and ν3,

which is standard practice in the literature. Because here we have the standard ΛCDM

scenario, the baryons, cold dark matter, and photons follow the standard evolution (both

at the background and perturbation levels).

7.2. Models and data analysis

We consider two different models. First, let us take ΛCDM + Neff +
∑

mν + c2
eff +

c2
vis + ξ (Model I). Then, we take a particular case of the Model I when c2

eff = c2
vis = 1/3,

i.e., ΛCDM + Neff +
∑

mν + ξ (Model II). Following the Planck collaboration, we fix the

mass ordering of the active neutrinos to the normal hierarchy with the minimum masses

allowed by oscillation experiments, i.e.,
∑

mν = 0.06 eV. In this work, we consider one

massive neutrino flavour ν1 and two massless flavours ν2, ν3 with degeneracy parameter

ξν = ξν1 = ξν2 = ξν3. In order to constrain the free parameters of the models, we consider

the following data sets:

CMB: We consider a conservative data set from Planck 2015 comprised of the like-

lihoods of temperature power spectrum (TT), low-polarisation and lensing reconstruction.

BAO: The BAO measurements from the Six Degree Field Galaxy Survey (6dF) [231],

the Main Galaxy Sample of Data Release 7 of Sloan Digital Sky Survey (SDSS-MGS)

[232], the LOWZ and CMASS galaxy samples of the Baryon Oscillation Spectroscopic

Survey (BOSS-LOWZ and BOSS-CMASS, respectively) [233], and the distribution of the



191

Table 6 – Cluster abundance measurements given in terms of S8 included in our analysis.

Type α β Measurement Reference
Number counts 1.0 0.5 0.465 ± 0.03 [238]
Number counts 0.25 0.41 0.832 ± 0.03 [239]
X-ray counts 0.32 0.30 0.86 ± 0.04 [240]
Sunyaev-Zeldovich effect 0.25 0.298 0.785 ± 0.037 [241]
X-ray cross CMB 0.30 0.26 0.80 ± 0.02 [242]
X-ray luminosities 0.30 0.25 0.80 ± 0.04 [243]
Sunyaev-Zeldovich effect 0.27 0.301 0.782 ± 0.01 [244]
X-ray masses 0.25 0.47 0.813 ± 0.013 [245]
Tomographic weak lensing 0.27 0.46 0.774 ± 0.040 [246]

LymanForest in BOSS (BOSS-Ly) [234]. These data points are summarized in table I

of [235].

HST : We include the new local value of Hubble constant, H0 = 73.02 ± 1.79

km/s/Mpc as measured by [305] with a 2.4 per cent determination.

GC: The measurements from the abundance of GCs are a powerful probe of the

growth of cosmic structures. However, this cosmological test depends on the calibra-

tion of the mass-observable relation, which can represents uncertainty in the measure of

clusters samples properties. It is well known that cluster data are in tension with CMB

data up to 95 per cent CL, especially when taking into account contributions due to

non-linear scales. In orden to explore the full GC counts as a cosmological probe, it is

necessary to take into account the modelling the number of haloes within a redshift and

mass bin, for example. This modelling is hard and expensive to perform. However, the

cosmological information enclosed in the cluster abundance is efficiently parametrized by

S8 = σ8(Ωm/α)β, where σ8 is the linear amplitude of fluctuations on 8 Mpc/h scale and

α and β are the fiducial value adopted in each survey analysis. It can be an exhausting

task to analyze different clusters samples in order to verify possible systematic effects that

might exist in each survey. [237] show that cluster abundance (from the full expression)

carries less information about geometry parameters than about growth of structures (to

constrain the growth parameters). This consideration justifies the choice of using CG

data in the plan S8, which also minimizes the computational cost. This methodology

was also recently adopted by [236]. Table 6 summarizes the measures of S8 used in this work.

We use the publicly available CLASS [269] and Monte Python [266] codes for

constraining parameters of the models considered in the present work. We use Metropolis

Hastings algorithm with uniform priors on the model parameters to obtain correlated

Markov Chain Monte Carlo samples by considering two combinations of data sets: CMB

+ BAO + HST and CMB + BAO + HST + GC. All the parameter chains in our analysis

converge according to the Gelman-Rubin criteria 1 −R < 0.01 [247].



192

Table 7 – Constraints at 68 and 95 per cent CLs on some parameters of the Model I. The
parameter H0 is in the units of km s−1 Mpc−1 and

∑

mν is in units of eV.

Parameter CMB + BAO + H0 CMB + BAO + H0 + GC
∑

mν < 0.24 (< 0.36) < 0.64 (< 0.81)

c2
vis 0.63+0.17+0.32

−0.17−0.32 0.58+0.22+0.40
−0.25−0.40

c2
eff 0.311+0.012+0.028

−0.015−0.027 0.319+0.013+0.024
−0.013−0.027

ξν 0.1+0.54+1.0
−0.54−1.0 0.02+0.50+0.90

−0.50−0.85

Neff 3.41+0.23 +0.43
−0.23 −0.42 3.66+0.26 +0.48

+0.26 −0.49

ΩΛ 0.706+0.008+0.016
−0.008−0.016 0.706+0.008+0.015

−0.008−0.015

YHe 0.2523+0.0029+0.0054
−0.0029−0.0056 0.2557+0.0032+0.0059

−0.0032−0.0063

H0 69.81.3+2.5
1.3−2.5 70.7+1.2+2.4

−1.2−2.2

σ8 0.839+0.018+0.036
−0.018−0.037 0.776+0.010+0.019

−0.010−0.019

Table 8 – Constraints at 68 and 95 per cent CLs on some parameters of the Model II. The
parameter H0 is in the units of km s−1 Mpc−1 and

∑

mν is in units of eV.

Parameter CMB + BAO + H0 CMB + BAO + H0 + GC
∑

mν < 0.18 (< 0.30) < 0.52 (< 0.64)

ξν 0.05+0.56+0.97
−0.56−0.99 −0.02+0.51+0.92

−0.51−0.89

Neff 3.49+0.21 +0.44
−0.23 −0.42 3.65+0.28 +0.57

−0.28 −0.60

ΩΛ 0.703+0.009+0.015
−0.008−0.016 0.706+0.008+0.015

−0.008−0.016

YHe 0.2537+0.0028+0.0056
−0.0028−0.0056 0.2557+0.0038+0.0071

−0.0032−0.0077

H0 70.5+1.3+2.7
−1.3−2.6 71.2+1.4+2.6

−1.4−2.7

σ8 0.823+0.016+0.030
+0.014−0.032 0.777+0.010+0.020

−0.010−0.019
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Figure 48 – One-dimensional marginalized distribution and 68 and 95 per cent CLs regions
for some selected parameters of the Model I.



194

0.750.780.810.840.87
8

3.0

3.5

4.0

4.5

N
ef

f

0.8 0.0 0.8
0.75

0.78

0.81

0.84

0.87

8

3.0 3.5 4.0 4.5
Neff

CMB + BAO + HST + GC
CMB + BAO + HST
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Figure 50 – The likelihoods of the parameter H0 for Model I (left panel) and Model II
(right panel), in red (CMB + BAO + HST ) and green (CMB + BAO + HST + GC).
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Figure 51 – Neutrino density perturbations as a function of scale factor for three fixed
scales, k = 0.001 Mpc−1, 0.01 Mpc−1 and 0.1 Mpc−1. In drawing the graphs we have
taken the best fit values from our analysis. The continuous and dashed line represent the

models I and II from CMB + BAO + HST + GC, respectively.
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Figure 52 – CMB temperature power spectrum difference among the models investi-
gated here and the six parameter ΛCDM model, i.e., ∆Cl/Cl = (CΛCDM extended

l −
CΛCDM P lanck 2015

l )/CΛCDM P lanck 2015
l . The black continuous and dotted lines represent the

Model II from CMB + BAO + HST and CMB + BAO + HST + GC, respectively. The
orange continuous and dotted lines represent the Model I from CMB + BAO + HSTand
CMB + BAO + HST + GC, respectively. In drawing the graphs we have taken the best

fit values from our analysis and Planck collaboration paper.

7.3. Probing the properties of relic neutrinos

Table 7 summarizes the main results of the statistical analysis carried out using

two different combinations for the Model I, CMB + BAO + HST and CMB + BAO +

HST + GC. Fig. 48 shows the parametric space for some parameters of the Model I and

its correlations. In both cases, we do not notice significant changes in the parameters ξν

and c2
eff from standard prevision, i.e., (ξν , c2

eff) = (0, 1/3). We note a small deviation on

the viscosity parameter, c2
eff 6= 1/3, at 68 per cent CL in both analysis. Any value besides

c2
eff = 1/3 can be interpreted as an explicit coupling of the relativistic neutrino (or some

dark radiation) to a nonrelativistic particle species, e.g, cold dark matter [216,248–250].

In general terms, the presence of a dark radiation-dark matter interaction, the clustering

properties of the dark radiation can be modified (see [216,248–250] and references therein).

That is, if dark radiation is composed of interacting particles, the values of the parameters
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c2
eff and c2

vis can differ from the usual ones. In this present work, we report that sound speed

in the CνB rest frame is closed in the standard value, that is, c2
eff = 1/3 and c2

vis 6= 1/3 at

68 per cent CL, in both analysis. In the standard scenario (three active neutrinos and

considering effects related to non-instantaneous neutrino decoupling), we have Neff ≃ 3.046.

As previously introduced, the presence of a dark radiation is usually parametrized in the

literature by ∆Neff ≃ Neff − 3.046. From our results, we can note a small excess over Neff .

More specifically, we have ∆Neff ≃ 0.364 (0.614) from the best-fitting values for CMB +

BAO + HST (CMB + BAO + HST + GC). When evaluated the border at 95 per cent

CL, we note ∆Neff < 0.794 (1.09) from CMB + BAO + HST (CMB + BAO + HST +

GC. There are many candidates for dark radiation, for instance, sterile neutrinos [251],

thermal axions [252] and Goldstone bosons [253]. We can note that the constraints for

∆Neff is consistent with a partly thermalized sterile neutrino or a Goldstone boson from

CMB + BAO + HST+ GC (best fit) and CMB + BAO + HST (border 95 per cent CL).

A fully thermalized sterile neutrino is consistent at 95 per cent CL from CMB + BAO +

HST + GC. About the neutrino mass scale, we have
∑

mν < 0.36 eV (< 0.81 eV) at 95

per cent CL from CMB + BAO + HST (CMB + BAO + HST + GC). We see a variation

around 0.45 eV when the GC data are added.

Table 12 summarizes the main results of the statistical analysis carried out using

two different combinations for the Model II, CMB + BAO + HST and CMB + BAO +

HST + GC. Fig. 49 shows the parametric space for some parameters of the Model II. In

both analysis, we do not observe significant deviation of the degeneracy parameter ξν from

the null value. However, in Model II, a small variation on ∆Neff can be noticed compared

to the Model I. We have ∆Neff ≃ 0.454 (0.604) from CMB + BAO + HST (CMB + BAO

+ HST + GC), respectively. A border at 95 per cent CL reads ∆Neff < 0.884 (< 1.17)

for CMB + BAO + HST (CMB + BAO + HST + GC). Here, a partly thermalized

sterile neutrino or a Goldstone boson can be accommodated in both analyzes. Within the

context of the Model II, when the GC data is added to CMB + BAO + HST, we have

a variation of around 0.34 eV on the neutrino mass scale. The correlation between the

extra relativistic degrees of freedom and the Hubble constant H0 is well known. Within

the standard ΛCDM baseline, the Planck collaboration [213] measured H0 = 67.27 ± 0.66

km s−1 Mpc−1, that is about 99 per cent CL deviations away from the locally measured

value H0 = 73.24 ± 1.74 km s−1 Mpc−1, reported in [305]. The left panel of Fig. 50 showsl

the likelihoods for H0 resulting from the two cases analysed here. Changes in the central

value of H0 are not observed, and both cases return very similar fits with H0 ≃ 70 km s−1

Mpc−1. That intermediate value in comparison with the local and global constraints can

assuage the current tension on the Hubble constant. In our analysis, we are take ξν as a

free parameter (see i.e. Fig. 53). In addition to interpreting ∆Neff only as a contribution

due a some dark radiation, it is well known that the impact of the leptonic asymmetry

increases the radiation energy density. Assuming three neutrino species with degenerated
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chemical potential ξν , we can write

∆Neff = ∆N ξ
eff + ∆Ndr

eff , (7.6)

where ∆N ξ
eff , ∆Ndr

eff represents the contribution from the cosmological lepton asymmetry and

dark radiation, respectively. The increase via the leptonic asymmetry can be parametrized

by

∆N ξ
eff =

90

7

(

ξν

π

)2

+
45

7

(

ξν

π

)4

. (7.7)

It is important to make clear that in all analyses, we are taking Neff as free parameter, and

we do not directly evaluating ∆Neff in our chains. Without loss of generality, we can evaluate

the contribution in equation (7.7) via the standard error propagation theory. We note,

∆N ξ
eff = 0.013 ± 0.261 (0.0005 ± 0.044) for the Model I from CMB + BAO + HST (CMB

+ BAO + HST+ GC). For the Model II, we have ∆N ξ
eff = 0.0032 ± 0.127 (0.00052 ± 0.046)

for CMB + BAO + HST (CMB + BAO + HST + GC). Therefore, in general, from our

analysis we can claim that the contribution from ∆N ξ
eff is very small, i.e., ∆N ξ

eff ≪ ∆Ndr
eff

and ∆Neff ≃ ∆Ndr
eff . Fig. 51 (left panel) shows the linear neutrino perturbations as a

function of the scale factor for three different scales. The solid and dashed lines represent

models I, II, respectively, using the best fit from CMB + BAO + HST + GC. Having an

account of the physical variation of Model I (c2
eff and c2

vis from the best fit in table II) to

Model II (c2
eff = c2

vis = 1/3), this causes a very small change in the amplitude and phase of

the density perturbations. Variation in the degeneracy parameter does not significantly

affect the perturbations. In the right panel (Fig. 52), we have a comparison of the effects

on CMB TT of the extended models investigated here and the six parameter ΛCDM model

from Planck team [213]. We can see that the theoretical prediction of the Model II up to

l . 3000 is very similar to the six parameter ΛCDM model. The Model I shows variations

around 7 per cent up to the range of the Planck CMB TT data.
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Figure 53 – Lepton asymmetry parameter vs BBN: Here we show how the lepton asymmetry
parameter varies with respect to different species of baryons, linked through the Eq. (7.7)
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Chapter 8

Forecast on lepton asymmetry from future CMB

experiments

Based on: "Forecast on lepton asymmetry from future CMB experiments",

Mon.Not.Roy.Astron.Soc. 485 (2019) 2, 2486-2491.1

8.1. Cosmological lepton asymmetry and Sakharov conditions

It is normally assumed that cosmological lepton charge asymmetry, i.e the difference

between the number densities of neutrinos and antineutrinos, is vanishingly small. Of

course relic neutrinos are not observed directly but the asymmetries that can be observed

are very small; baryon asymmetry is βB = (nB − nB̄)/nγ = (a few) × 10−10 and electric

asymmetry is probably exactly zero. So by analogy, the asymmetry between leptons and

antileptons βL = (nL − nL̄)/nγ is assumed to be also small. Moreover, there are some

theoretical grounds for a small lepton asymmetry ( for a review see e.g. [435]). In SU(5)

grand unification models the difference of leptonic and baryonic charges, (B − L), is

conserved, so lepton and baryon asymmetry must be the same. Even in SO(10), where

this conservation law is not valid, the asymmetries have similar magnitude in simple

versions of the theory. Despite that, it was suggested in ref. [436] that a large lepton

asymmetry together with a small baryonic one might be generated in grand unified theories.

A model which permitted to realize generation of a small βB and a much larger βL in the

frameworks of SO(10)-symmetry was proposed in ref. [437]. On the other hand (B −L) is

conserved in electroweak theory, and thus if electroweak baryogenesis is operative, then

after electroweak phase transition any preexisting baryon or lepton asymmetry would be

redistributed in more or less equal shares between baryons and leptons.

1 https://academic.oup.com/mnras/article/485/2/2486/5365435?login=false.
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Nevertheless, a few theoretical models predicting a large difference between βB and

βL have been proposed during the past decade. To avoid electroweak "equalization" one

has to assume that either generation of lepton asymmetry took place after electroweak

phase transition or that the electroweak washing-out of preexisting asymmetries is not

effective. A possible mechanism to suppress electroweak non-conservation of baryons and

leptons is triggered by lepton asymmetry itself. As was pointed out in ref. [438] a large

charge asymmetry suppresses symmetry restoration at high temperatures. The suppression

of symmetry restoration or even symmetry breaking at high T , induced by large chemical

potentials, was found in several papers in different theories [439,440]. It means in particular

that due to this effect electroweak non-conservation of baryonic and leptonic charges in

strongly asymmetric background would always be exponentially small [441]. As was shown

in ref. [442] electroweak symmetry in the minimal standard model is not restored at high

temperatures if ξν = 2.5 − 5.3 and the masses of the Higgs bosons lie in the range 100-800

GeV. Another logically possible, though rather unnatural, way to avoid contradiction with

electroweak baryogenesis is to assume that the total lepton asymmetry is small,

βL = βe + βµ + βτ ∼ βB ≈ (a few × 10−10) (8.1)

while individual βj could be much larger, even of the order of unity. A rather

interesting argument in favor of this was found recently in ref. [443]: if electron number and

lepton number are equal and opposite, then baryon asymmetry produced by electro-weak

processes in the standard model is equal to the observed one within a factor of 2 and

has the correct sign. A model predicting a large (even of order unity) lepton asymmetry

together with a small baryonic one was proposed in refs. [435, 444] in the frameworks

of Affleck and Dine baryogenesis scenario [445]. Other models in the same frameworks

were suggested recently in [446,447]. A possible way to create an overpopulated, though

not necessarily asymmetric, cosmological neutrino density through decays of a heavier

particle was considered in ref. [448]. A possibility of generation of a large asymmetry

by active/sterile neutrino oscillations was advocated in ref. [449] and in many subse-

quent papers. Thus, there are plenty of mechanisms of efficient leptogenesis and it is not

excluded that cosmological lepton asymmetry is large, and it is worthwhile to discuss

its observational manifestations. The earlier papers on the subject are reviewed e.g. in [436].

In 1967, Andrei Sakharov proposed [450] a set of three necessary conditions that a

baryon-generating interaction must satisfy to produce matter and antimatter at different

rates. These conditions were inspired by the recent discoveries of the CMB and CP-

violation in the neutral kaon system [451]. The three necessary "Sakharov conditions"

are:
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• Baryon number β violation.

• C-symmetry and CP-symmetry violation.

• Interactions out of thermal equilibrium.

Baryon number violation is a necessary condition to produce an excess of baryons over

anti-baryons. But C-symmetry violation is also needed so that the interactions which

produce more baryons than anti-baryons will not be counterbalanced by interactions which

produce more anti-baryons than baryons. CP-symmetry violation is similarly required

because otherwise equal numbers of left-handed baryons and right-handed anti-baryons

would be produced, as well as equal numbers of left-handed anti-baryons and right-handed

baryons. Finally, the interactions must be out of thermal equilibrium, since otherwise

CPT symmetry would assure compensation between processes increasing and decreasing

the baryon number. Currently, there is no experimental evidence of particle interactions

where the conservation of baryon number is broken perturbatively: this would appear

to suggest that all observed particle reactions have equal baryon number before and

after. Mathematically, the commutator of the baryon number quantum operator with the

(perturbative) Standard Model hamiltonian is zero: [B,H] = BH −HB = 0. However,

the Standard Model is known to violate the conservation of baryon number only non-

perturbatively: a global U(1) anomaly. To account for baryon violation in baryogenesis,

such events (including proton decay) can occur in Grand Unification Theories (GUTs) and

supersymmetric (SUSY) models via hypothetical massive bosons such as the X boson. The

second condition – violation of CP-symmetry – was discovered in 1964 (direct CP-violation,

that is violation of CP-symmetry in a decay process, was discovered later, in 1999).

Due to CPT symmetry, violation of CP-symmetry demands violation of time inversion

symmetry, or T-symmetry. In the out-of-equilibrium decay scenario, the last condition

states that the rate of a reaction which generates baryon-asymmetry must be less than the

rate of expansion of the universe. In this situation the particles and their corresponding

antiparticles do not achieve thermal equilibrium due to rapid expansion decreasing the

occurrence of pair-annihilation.

8.2. CνB and lepton asymmetry

The current contribution of neutrinos to the energy density of the Universe is given

by,

ρν = 104h2Ων eVcm−3, (8.2)
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where Ων0 is the neutrino energy density in units of critical density. As usual, relativistic

neutrinos contribute to the total energy density of radiation ρr, typically parametrized as

ρr =
[

1 +
7

8

(

4

11

)4/3

Neff

]

ργ, (8.3)

where ργ is the energy density of photons; the factor 7/8 is due to the neutrinos that

are fermions, and Neff = 3.046 is the value of the effective number of neutrinos species

in the standard case, with zero asymmetries and no extra relativistic degrees of freedom.

Neutrinos become nonrelativistic when their average momentum falls below their mass. In

the very early Universe, neutrinos and anti-neutrinos of each flavor νi (i = e, µ, τ) behave

like relativistic particles. Both the energy density and pressure of one species of massive

degenerate neutrinos and anti-neutrinos are described by (here we adopt the geometrical

unit system where ~ = c = kB = 1)

ρνi
+ ρν̄i

= T 4
ν

∫ d3q

2(π)3
q2Eνi

(fνi
(q) + fν̄i

)) (8.4)

and

3(pνi
+ pν̄i

) = T 4
ν

∫ d3q

2(π)3

q2

Eνi

(fνi
(q) + fν̄i

)), (8.5)

where E2
νi

= q2 + a2mνi
is one flavor neutrino/anti-neutrino energy and q = ap is the

comoving momentum. The functions fνi
, fν̄i

are the Fermi-Dirac phase space distributions

given by

fνi
(q) =

1

eEνi /Tν−ξν + 1
, fν̄i

(q) =
1

eEν̄i /Tν−ξν̄ + 1
, (8.6)

where ξν = uν/Tν0 is the neutrino degeneracy parameter and µ is the neutrino chemical

potential. In the early Universe, we assumed that neutrinos-anti-neutrinos are produced

in thermal and chemical equilibrium. Their equilibrium distribution functions have been

frozen from the time of decoupling to the present. Then, as the chemical potential uν

scales as Tν , the degeneracy parameter ξν remains constant and it is different from zero if a

neutrino-anti-neutrino asymmetry has been produced before the decoupling. The energy of

neutrinos changes according to cosmological redshift after decoupling, which is a moment

when they are still relativistic. The neutrino degeneracy parameter ξν is conserved, and

its significant and non-null values may have imprints on the some important physical

processes through the evolution of the Universe, such as BBN, photon decoupling and LSS,

among others (see [260,273,288,289,291–293,304,310,311,319]). If ξν remains constant,
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finite and non-zero after decoupling, then it could lead to an asymmetry on the neutrinos

and anti-neutrinos given by

ην ≡ nνi
− nν̄i

nγ

=
1

12ζ(3)

∑

i

yν

(

π2ξi + ξ3
i

)

, (8.7)

where nνi
(nν̄i

) is the neutrino (anti-neutrino) number density, nγ is the photon number

density, ζ(3) ≈ 1.20206, and y1/3
ν = Tνi

/Tγ is the ratio of neutrino and photons tempera-

tures to the present, where Tγ is the temperature of the CMB (T0 = 2.726K). Neutrino

asymmetry it is a quantity that varies with time and the value of the factor (Tνi
/Tγ)3

before of the electron-positron annihilation ((Tνi
/Tγ)3 = 1) differs from its standard value

after electron-positron pair annihilation to photons by (Tνi
/Tγ) = 4/11. As we have

mentioned above, the neutrino asymmetry can produce changes in the expansion rate of

the Universe at early times, which can be expressed as an excess in Neff in the form

∆Neff =
15

7

∑

i



2

(

ξi

π

)2

+

(

ξi

π

)4


 . (8.8)

The evidence of any positive deviation from the standard theoretical value of Neff

can also be a signal that the radiation content of the Universe is not only due to photons

or relativistic neutrinos, but also some extra relativistic relics, known in the literature as

"dark radiation". Nowadays, Plank team, has constrained this value Neff = 3.04 ± 0.33 at

95% of confidence level (CL) within the ΛCDM + Σmν model, with Σmν < 0.194 eV

(from CMB alone).

In what follows, let us impose new observational limits on ξ by taking predictions

from some future CMB experiments.

8.3. Models and data analysis

Here we intend to predict the ability of future CMB experiments to constrain the

neutrino lepton asymmetry as well as the neutrino mass scale. We follow the common

approach already used (see for example [281, 284]), on mock data for some possible

future experimental configurations, assuming a fiducial flat ΛCDM model compatible with

the Planck 2018 results. We use the publicly available Boltzmann code class [269] to

compute the theoretical CMB angular power spectra CT T
l , CT E

l , CEE
l for temperature,

cross temperature-polarization and polarization. Together with the primary anisotropy

signal, we also take into account the information from CMB weak lensing, considering the
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power spectrum of the CMB lensing potential CP P
l . The BB missions are clearly sensitive

also to the BB lensing polarization signal, but here we adopt a bit conservative approach

to not include it in the forecasts. In our simulations, we have used an instrumental noise

given by the usual expression

Nl = w−1 exp
(

l(l + 1)θ2/8 ln(2)
)

, (8.9)

where θ is the experimental FWHM angular resolution, w−1 is the experimental power

noise expressed in µK-arcmin. The total variance of the multipoles alm is therefore given

by the sum of the fiducial C ′
ls with the instrumental noise Nl. The simulated experimental

data are then compared with a theoretical model assuming a Gaussian likelihood L given

by

−2 ln L =
∑

l

(2l + 1)fsky

(

D

|C̄| + ln
|C̄|
|Ĉ|

− 3
)

, (8.10)

where C̄l and Ĉl are the assumed fiducial and theoretical spectra plus noise, and |C̄| and

|Ĉ| are the determinants of the theoretical and observed data covariance matrices given by

|C̄| = C̄l
T T
C̄l

EE
C̄l

P P − (C̄l
T E

)2C̄l
P P − (C̄l

T P
)2C̄l

EE
, (8.11)

|Ĉ| = ĈT T ĈEEĈP P − (ĈT E)2ĈP P − (ĈT P )2ĈEE, (8.12)

D is defined as

D = ĈT T C̄l
EE
C̄l

P P
+ C̄l

T T
ĈEEC̄l

P P
+ C̄l

T T
C̄l

EE
ĈP P

−C̄l
T E

(C̄l
T E
ĈP P + 2ĈT EC̄l

P P
)

−C̄l
T P

(C̄l
T P
ĈEE + 2ĈT P C̄l

EE
), (8.13)

and finally fsky is the sky fraction sampled by the experiment after foregrounds removal.

In Table 9, we have summarized the experimental specifications for CORE and CMB-S4

data. Forecasting is based on future CMB experiments to probe neutrinos properties, also

investigated in [270,272,299].
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Table 9 – Experimental specifications for CORE and CMB-S4 with beam width, power
noise sensitivities of the temperature and polarization.

Experiment Beam Power noise [µK-arcmin] lmin lmax fsky

Core 6.0 2.5 2 3000 0.7
S4 3.0 1.0 50 3000 0.4

Table 10 – Summary of the observational constraints from both CORE and CMB-S4
experiments. The notations σ(Core) and σ(S4), represent the 68% CL estimation on the
fiducial values from CORE and CMB-S4, respectively. The parameter H0 is in km s−1

Mpc−1 units and
∑

mν is in eV units.

Parameter Fiducial value σ(Core) σ(S4)
102ωb 2.22 0.000057 0.00012

ωcdm 0.11919 0.00037 0.0000093

H0 68.0 0.32 0.0088

ln 1010As 3.0753 0.0056 0.0035

ns 0.96229 0.0022 0.0054

τreio 0.055 0.0028 0.00025

∑

mν 0.06 0.024 0.00053

ξν 0.05 0.071 0.027

8.4. Forecast on lepton asymmetry

We have used the publicly available CLASS [269] and Monte Python [266] codes

for the model considered in the present work, where we have introduced the ξ corrections

on Neff defined in Eq. (8.8) in CLASS code. We have considered one massive and two

massless neutrino states, as standard in the literature, and we fixed the mass ordering to

the normal hierarchy with the minimum mass
∑

mν = 0.06 eV. In our forecasts, we have

assumed the following set of the cosmological parameters:

{100ωb, ωcdm, ln 1010As, ns, τreio, H0,
∑

mν , ξ}.

where the parameters are: baryon density, CDM density, amplitude and slope of the

primordial spectrum of metric fluctuations, optical depth to reionization, Hubble constant,

neutrino mass scale, and the degeneracy parameter characterizing the degree of leptonic

asymmetry, respectively, with the fiducial values {2.22, 0.119, 3.07, 0.962, 0.05, 68.0, 0.06,

0.05 }. The details of the methodology used in the probability can be seen in [281,284].
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Figure 54 – One-dimensional marginalized distribution and 68% CL and 95% CL regions
for some selected parameters taking into account Planck and CORE experiments.
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Figure 55 – One-dimensional marginalized distribution and 68% CL and 95% CL regions
for some selected parameters taking into account CORE and S4 experiments.
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Table 10 shows the constraints on the model baseline imposed by the CORE and

S4 experiments. Figures 54 and 55 show the parametric space for some parameters of

interest in our work, from Planck/CORE and CORE/S4 constraints, respectively. From

Planck data, we can note that the degeneracy parameter is constrained to ξν = 0.05 ± 0.20

(±0.33) at 68% CL and 95% CL., which is a result compatible with the null hypothesis

even to 1σ CL. In [301], the authors obtain ξ = −0.002+0.114
−0.11 at 95% CL from Planck data.

Evidence for cosmological lepton asymmetry from CMB data have been found in [273].

On the other hand, the constraints on the degeneracy parameter are close to the

null value also within the accuracy achieved by CORE data, ξν = 0.05 ± 0.071 (±0.11)

at 68% CL and 95% CL, being compatible with the null hypothesis even to 1σ CL, as in

the case of Planck data, used in the present work. However, with respect to the accuracy

obtained by CMB-S4, we find ξν = 0.05±0.027 (±0.043) at 68% CL (95% CL), respectively.

These constraints can rule out the null hypothesis up to 2σ CL on ξν . In principle this

last result can open the door to the possibility to unveil the physical nature of neutrinos,

that is, the neutrinos can be Dirac particles against the null hypothesis of Majorana

particles. However, these results must be firmly established from the point of view of

particle physics, for example, from ground-based experiments such as PandaX-III (Particle

And Astrophysical Xenon Experiment III), which are supposed to explore the nature of

neutrinos, including physical properties such as the absolute scale of the neutrino masses

and the aforementioned violation of leptonic number conservation through Neutrinoless

Double Beta Decay (NLDBD), and whose observation will be a clear signal that the

neutrinos are their own antiparticles (for more details see [276]). These results could be

available within the next decade.

In Figure 54, we can note that there is a high anti-correlation between the neutrinos’

masses and H0, that will increase the tension between the local and global measures of

H0, if the masses of the neutrinos increase (therefore they will decrease the value of H0),

such that, constraints on those parameters must be cautiously interpreted until such

tension can be better understood. Within the standard base-ΛCDM cosmology, the Planck

Collaboration [303] reports H0 = 67.36 ± 0.54 kms−1Mpc−1, which is about 99% away

from the locally measured value H0 = 72.24 ± 1.74 kms−1Mpc−1 reported in [305]. We

obtain, H0 = 68.00 ± 2.32 (±3.78) kms−1Mpc−1 at 68% CL and 95% CL, for our model

with Planck data, which can reduce the tension between the global and local value of H0 at

least 2σ. The difference of our results from Planck 2018 is due to our extended parameter

space. On the other hand, from the Planck data analysis we can note that the neutrino

mass scale is constrained to
∑

mν < 0.36 eV at 95% CL, which is in good agreement

with the one obtained by Planck Collaboration, i.e.,
∑

mν < 0.24 eV [303]. From the
∑

mν − H0 plane, we note that no relevant changes are obtained with respect to the

mass splitting, which requires that
∑

mν < 0.1 eV to rule out the inverted mass hierarchy

(m2 & m1 ≫ m3). However, these results start to favor the scheme of normal hierarchy
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(m1 ≪ m2 < m3). The results from CORE and S4 present considerable improvements

with respect to Planck data, see Figures 54 and 55. With respect to neutrino mass scale

bounds imposed from CORE and S4 data, we find the limits 0.021 <
∑

mν . 0.1 eV and

0.05913 <
∑

mν . 0.061 eV at 95% CL, for CORE and S4, respectively. Thus, these are

unfavorable to the inverted hierarchy scheme mass at least at 95% CL in both cases.

In the standard scenario of three active neutrinos, if we consider effects of non-

instantaneous decoupling, we have Neff = 3.046. We emphasize that this value is fixed

in our analysis. It is well known that the impact of the leptonic asymmetry increase

the radiation energy density with the form, Neff = 3.046 + ∆N ξν

eff , where ∆N ξν

eff is due

to the leptonic asymmetry induced via Eq. (8.8). Without losing of generality, we can

evaluate the contribution ∆N ξν

eff via the standard error propagation theory. We note that,

∆N ξν

eff = 0.002 ± 0.019 (±0.030) for Planck data, ∆N ξν

eff = 0.0022 ± 0.0083 (±0.013) for

CORE data and ∆N ξν

eff = 0.0022 ± 0.0045 (±0.0059) for S4 data, all limits being at 68%

and 95% CL. Therefore, we can assert that the contributions from ξν on Neff are very

small. But in the case of CMB-S4, even this contribution is very small, it can be non-null.
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Chapter 9

Observing Dirac neutrinos with CMB and other

cosmological tests

Based on: "Unveiling the nature of Dirac’s neutrinos in light of the latest

cosmological evidence: The case for dark radiation and PBH." Send to Symmetry

MDPI, Special Issue "Neutrino Physics and Symmetry".

9.1. The case for dark radiation

Future cosmological observations will measure the radiation density of the early

universe at the percent level. These observations will probe the physics of neutrinos, as

well as the possible existence of extra light particles that are more weakly coupled to the

SM than neutrinos. Examples of light relics that can be constrained in this way are the

QCD axion [337–339], axion-like particles (ALPs) [340], dark photons [534] and light sterile

neutrinos [342]. These particles may be so weakly coupled that they are hard to detect in

terrestrial experiments, but the large number densities in the early universe make their

gravitational imprints observable. Let us assume that some physics beyond the Standard

Model adds an extra radiation density ρX to the early universe. It is conventional to

measure this density relative to the density of a SM neutrino species:

∆Neff ≡ ρX

ρν

=
1

aν

ρX

ργ

, (9.1)

and define Neff = Nν + ∆Neff as the effective number of neutrinos, although ρX may have

nothing to do with neutrinos. Current measurements of the CMB anisotropies and the

light element abundances find
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NCMB
eff = 3.04 ± 0.18 , (9.2)

NBBN
eff = 2.85 ± 0.28 , (9.3)

which is consistent with the SM prediction,1 Neff = 3.046. Future CMB observations have

the potential to improve these constraints by an order of magnitude [343]. A natural

source for ∆Neff 6= 0 are extra relativistic particles. Let us therefore consider a light

species X as the only additional particle in some BSM theory. Assuming that this species

was in thermal equilibrium with the SM at some point in the history of the universe, we

can compute its contribution to Neff in the same way as we derived the relic density of

neutrinos in section 4.4. For concreteness, let us assume that the particles of the species X

decouple before neutrino decoupling, Tdec,X > 10 MeV. Particle-antiparticle annihilations

until neutrino decoupling will lead to a difference between the temperature associated

with the species X and that of neutrinos:

TX =

(

g∗(Tdec,ν)

g∗(Tdec,X)

)1/3

Tν =
(

10.75

106.75

)1/3
(

106.75

g∗(Tdec,X)

)1/3

Tν

= 0.465

(

106.75

g∗(Tdec,X)

)1/3

Tν . (9.4)

After neutrino decoupling, TX and Tν evolve in the same way, with both receiving the

same suppression relative to Tγ from e+e− annihilation. As long as both X and ν are

relativistic, they therefore maintain a constant energy ratio

∆Neff ≡ ρX

ρν

=
g∗,X

g∗,ν

(

TX

Tν

)4

= 0.027 g∗,X

(

106.75

g∗(Tdec,X)

)4/3

, (9.5)

where g∗,ν = 7
4

and g∗,X = {1, 7
4
, 2, . . .} are the internal degrees of freedom for spin

{0, 1
2
, 1, . . .} particles. Figure 56 shows the contribution of a single decoupled species as a

function of its decoupling temperature. We see that the contributions asymptote to fixed

values for decoupling temperatures above the mass of the top quark (the heaviest particle

of the SM). Using g∗(Tdec,X) ≤ 106.75 in expression (9.5), we find that the extra species

1 The predicted value of Neff = 3.046 accounts for plasma corrections of quantum electrody-
namics, flavour oscillations and, in particular, the fact that neutrinos have not fully decoupled
when electrons and positrons annihilated.
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Figure 56 – Contributions of a single thermally-decoupled Goldstone boson, Weyl fermion
or massless gauge boson to the effective number of neutrinos, ∆Neff , as a function of its

decoupling temperature Tdec.

X contributes the following minimal amount2

∆Neff > 0.027 g∗,X =



























0.054 gauge boson

0.047 Weyl fermion

0.027 Goldstone boson

(9.6)

As we will see, this is an interesting target for future CMB experiments as CMB-S4 or

CORE.

2 In deriving this bound, we assumed an extension of the SM in which there is no significant
entropy production after decoupling and that the species X is the only addition to the SM
particle content. Additional particles may both increase ∆Neff is there are light enough,
or decrease it if they are relativistic at the decoupling of X, but become non-relativistic
before neutrino decoupling. While entropy production typically dilutes the effects of extra
relativistic species, it can also lead to additional effects that can be looked for in cosmological
observations. For a more detailed discussion of these issues, see [344].
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9.2. Dirac neutrinos

Any extra non-photon radiation energy density ρrad is usually normalized to

the number density of one active neutrino flavor, Neff ≡ (8/7) (11/4)4/3 ρrad/ργ. The

current Planck measurement is Neff = 2.99 ± 0.17 (including baryon acoustic oscillation

(BAO) data) [453], perfectly consistent with the Standard Model (SM) expectation

NSM
eff = 3.045 [454–456]. CMB Stage IV (CMB-S4) experiments have the potential

to constrain ∆Neff ≡ Neff −NSM
eff = 0.060 (at 95% C.L.) [457,458], which is very sensitive

to new light degrees of freedom that were in equilibrium with the SM at some point, even

if it decoupled at multi-TeV temperatures. Indeed, a relativistic particle φ that decouples

from the SM plasma at temperature Tdec contributes

∆Neff ≃ 0.027

(

106.75

g⋆(Tdec)

)4/3

gs , (9.7)

where gs is the number of spin degrees of freedom of φ (multiplied by 7/8 for fermions)

and g⋆(Tdec) is the sum of all relativistic degrees of freedom except φ at T = Tdec. At

temperatures above the electroweak scale, g⋆ saturates to 106.75, the maximum amount

of entropy available from SM particles (see Appendix B). Reference [459] has recently

studied the impact of CMB-S4 on axions and axion-like particles (gs = 1), which are

reasonably well motivated but could easily lead to an entropy-suppressed contribution

∆Neff ≃ 0.027 that is below the CMB-S4 reach. It should be kept in mind, however, that

an even better motivation for light degrees of freedom comes from the discovery of non-zero

neutrino masses: if neutrinos are Dirac particles then we necessarily need two or three

effectively massless chirality partners νR in our world, which would contribute a whooping

∆Neff ≥ 2 × 0.047 = 0.09 (two νR) or even ∆Neff ≥ 0.14 (three νR) if thermalized with the

SM, easily falsifiable or detectable! While it is well known that just SM + Dirac ν does not

put νR in equilibrium due to the tiny Yukawa couplings mν/〈H〉 . 10−11 [460,461], one

often expects additional interactions for νR in order to explain the smallness of neutrino

masses, to generate the observed matter–anti-matter asymmetry of our Universe, and

to protect the Dirac nature from quantum gravity, as we will highlight below. All of

these new νR interactions will then face strong constraints from CMB-S4 that will make it

difficult to see the mediator particles in any other experiment, in particular at the LHC.

The basic idea to measure new interactions via Neff in Big Bang nucleosynthesis (BBN) or

the CMB is of course old [573,574], see for example the reviews [464–466]. It is timely to

revisit these limits though since we are on the verge of reaching an important milestone:

sensitivity to Dirac-neutrino induced ∆Neff even if the νR decoupled above the electroweak

phase transition! As we will outline in this article, the non-observation of any ∆Neff in

CMB-S4 will then have serious consequences for almost all Dirac-neutrino models, in

particular those addressing the origin of the small neutrino mass.
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Observing Neff

The CMB is sensitive to the radiation energy density of the Universe via the

variant effects of radiation on the features of the acoustic peaks of the CMB and its

damping tail. The acoustic scale of the CMB is altered inversely proportionally to the

Hubble rate at the time of last scattering, θsound ∝ H−1, while the scattering causing the

exponentially suppressed damping tail of the CMB anisotropies goes as θdamping ∝ H−1/2.

These differential effects provide the primary signatures of extra ∆Neff in the CMB power

spectrum. The primordial helium abundance, Yp, also changes the scales of θsound to

θdamping similarly, however the near degeneracy between Neff and Yp is broken by other

physical effects, including the early integrated Sachs–Wolfe effect, effects of a high baryon

fraction, as well as the acoustic phase shift of the acoustic oscillations [467,468]. The limit

from Planck plus BAO data is Neff = 2.99 ± 0.17 [453], where the limit is from a single

parameter extension of the standard ΛCDM 6-parameter cosmological model. We translate

this into a 2σ constraint ∆Neff < 0.28. Currently underway and future experiments are

forecast to have even greater sensitivity, even with more conservative assumptions about

the possible presence of new physics. The South Pole Telescope SPT-3G is a ground-based

telescope currently in operation, with a factor of ∼ 20 improvement over its predecessor.

SPT-3G is forecast to have a sensitivity of σ(∆Neff) = 0.058, given here as the single

standard deviation (1σ) sensitivity [469]. This sensitivity is conservative in that it includes

the variation of a nine-parameter model for all of the new physics which SPT-3G will be

tackling: ΛCDM (six parameters), Neff, active neutrino mass (Σmν), plus tensors. We

estimate the 2σ sensitivity of SPT-3G as ∆Neff < 0.12. The CMB Simons Observatory

(SO), which will see first light in 2021, is forecast to have 1σ sensitivity in the range of

σ(∆Neff) = 0.05 to 0.07 [470]. For the noise level and resolution of CMB-S4, the differential

effects on the acoustic peaks and damping tail are predominately measured through the

TE spectrum at multipoles ℓ > 2500 [458]. The sensitivity of CMB-S4 is forecast to be

∆Neff = 0.060 at 95% C.L., as a single parameter extension to ΛCDM. In Fig. 57 we show

the current 2σ limit on Neff as well as the SPT-3G, SO, and CMB-S4 forecast as a function

of the decoupling temperature Tdec using Eq. (9.7). The current Planck limit requires

Tdec & 0.55GeV for three right-handed neutrinos, whereas SPT-3G, SO, and CMB-S4 can

conclusively probe this scenario for arbitrary decoupling temperatures. If only two νR are

in equilibrium, then SPT-3G/SO can probe Tdec ∼ 30GeV and CMB-S4 is required to

reach arbitrary decoupling temperatures. It is then clear that SPT-3G, SO, and CMB-S4

provide a significant sensitivity to the new physics of Dirac-neutrino models.
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Figure 57 – Contribution of one, two or three right-handed neutrinos νR to ∆Neff as a
function of their common decoupling temperature Tdec. The horizontal lines indicate the
current 2σ limit from Planck+BAO as well as the projected reach of SPT-3G, SO, and

CMB-S4.

Impact on Dirac neutrino models

In the following we will discuss the impact a near-future constraint ∆Neff < 0.06

would have on models involving Dirac neutrinos, which automatically bring two to three

relativistic states νR that could be in equilibrium and contribute to Neff. As with all

constraints from cosmology, our conclusions rest on additional assumptions regarding the

cosmological evolution, namely:

1. We assume general relativity and the cosmological standard model ΛCDM.

2. We assume that the (reheating) temperature of the Universe reached at least the mass

of the particles that couple to νR. This is a strong assumption since we technically

only know that the Universe was at least ∼ 5MeV hot [471], everything beyond being

speculation. Note however that most solutions to the matter–anti-matter asymmetry

require at least electroweak temperatures in order to thermalize sphalerons. Dark

matter production also typically requires TeV-scale temperatures, at least for weakly
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interacting massive particles.

3. No significant entropy dilution. To dilute three νR down to ∆Neff < 0.06 via

Eq. (9.7) one would need to roughly double the SM particle content. This means

that Dirac neutrinos would evade Neff constraints if they decoupled at temperatures

above the hypothetical supersymmetry or grand-unified-theory breaking scales, as

both of these SM extensions bring a large number of new particles with them. A

different way to generate entropy comes from an early phase of matter domination,

which requires a heavy particle that goes out of equilibrium while relativistic and

then decays sufficiently late so it has time to dominate the energy density of the

Universe [472,473].

Note that even if the νR never reached thermal equilibrium, it is possible that they

were created non-thermally and still leave an imprint in Neff [474]. Following Refs. [474–476]

it might even be possible to distinguish this νR origin of ∆Neff by observation of the cosmic

neutrino background, e.g. with PTOLEMY [477]. This will not be discussed here. We will

further restrict our discussion to renormalizable UV-complete quantum field theories. An

alternative approach would be to study higher-dimensional operators of an effective field

theory with SM fields + Dirac-ν and put constraints on the Wilson coefficients, e.g. on

the Dirac-ν magnetic moments [478–483]. However, higher-dimensional operators will

give νR production rates that are dominated by the highest available temperature and

thus depend explicitly on it [459]. In any renormalizable realization of such operators this

growing rate would be cured once the underlying mediators go into equilibrium, which

then brings us back to the approach pursued here. Before moving on to the impact of Neff

measurements on Dirac neutrino models, let us briefly comment on associated cosmological

signatures that arise in our Dirac-neutrino setup. At high temperatures, three νR simply

contribute to Neff as relativistic particles, as discussed above. However, since they have

the same mass as the active neutrinos but a lower temperature, TνR
= (∆Neff/3)1/4TνL

,

they will become non-relativistic slightly before the active neutrinos and thus modify the

usual neutrino free-streaming behavior by introducing an additional scale. Once the νL

also turn non-relativistic we find the total neutrino energy density

Ωνh
2 ≃



1 +

(

∆Neff

3

)3/4




∑3
j=1 mνj

94 eV
, (9.8)

which is at least 10% larger compared to the case of non-thermalized νR. Equa-

tion (9.2) would provide an excellent test of the Dirac-neutrino origin of a measured

∆Neff if the sum of neutrino masses could be determined independently, for example by

measuring the absolute neutrino mass scale in KATRIN [484] and the mass hierarchy in
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oscillation experiments. The contribution of the νR can be matched to a small effective

sterile neutrino mass

meff
ν,sterile = (∆Neff/3)3/4

3
∑

j=1

mνj
, (9.9)

as defined and constrained in combination with Neff by Planck [453]. As of now,

the cosmological neutrino mass measurements obtained via Ων are less helpful to constrain

Dirac neutrinos than ∆Neff, although the increased precision on Ων in CMB-S4 [458] and

DESI [485] will still provide useful information.

U(1)B−L and other gauge bosons

One important task of Dirac-neutrino model building is to protect the Dirac nature,

i.e. to forbid any and all ∆L = 2 Majorana mass terms for the neutrinos. While this can

easily be achieved by imposing a global lepton number symmetry U(1)L on the Lagrangian,

there is the looming danger that quantum gravity might break such global symmetries [486].

To protect the Dirac nature from quantum gravity it might then be preferable to use

a gauge symmetry to distinguish neutrino from anti-neutrino. The simplest choice is

U(1)B−L, which is already anomaly-free upon introduction of the three νR that we need

for Dirac neutrino masses. For unbroken U(1)B−L the Z ′ gauge boson can still have a

Stückelberg mass, a scenario discussed in Refs. [488,524].3 In a more extended scenario

one can even break U(1)B−L spontaneously, as long as it is by more than two units in

order to forbid Majorana mass terms [493]. The simplest example given in Ref. [542] has

a spontaneous symmetry breaking U(1)B−L → Z4, where the remaining discrete gauge

symmetry protects the Dirac nature of the neutrinos and the ∆(B − L) = 4 interactions

allow for leptogenesis [543], as discussed below. This broken U(1)B−L scenario also allows

an embedding into larger gauge groups such as left–right, Pati–Salam or SO(10) [493].

Protecting the Dirac nature of neutrinos in its strongest form thus requires νR couplings to

new gauge bosons, the most minimal example being a Z ′ from U(1)B−L. These new gauge

bosons can then lead to a thermalization of νR with the rest of the SM plasma in the early

Universe, e.g. via s-channel processes f̄f ↔ ν̄RνR [497, 499, 575,577], which then increases

Neff. Equilibrium is attained when this rate Γ exceeds the Hubble rate H(T ) ∼ T 2/MPl at

a certain temperature. The behavior of Γ/H(T ) is shown in Fig. 58, using Eq. (12) from

Ref. [488]. As can be seen, the ratio Γ/H(T ) is largest at the temperature T ∼ MZ′/3,

where inverse decays of Z ′ are highly efficient, so the most aggressive assumption is that

the Universe reached this temperature. Notice that a light Z ′ will itself start to contribute

to Neff [576,578].

3 Constraints on a U(1)B−L with Majorana neutrinos have been discussed extensively in the
literature, e.g. in Refs. [491,492,528,539].
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Figure 58 – Thermally averaged rate 〈Γ(f̄f ↔ ν̄RνR)〉 [488] divided by the Hubble rate
H(T ) as a function of temperature for some values of U(1)B−L gauge and coupling g′ = 10−7

and Z ′ mass MZ′ = 1 GeV. The νR are thermalized in the region above the horizontal
black line.

For heavy Z ′ masses above 20 GeV, we demand that the νR go out of equilibrium

before T ∼ 0.5 GeV (Fig. 57), which corresponds to the constraint MZ′/g′ > 14 TeV, far

better than pre-Planck limits [488,497,499,575,577]. A similar limit was recently derived in

Ref. [502]. For masses MeV < MZ′ . 10 GeV the limit becomes much stronger due to the

s-channel resonance of the rate, or equivalently the efficient inverse decay of Z ′. Here we

demand that the νR are out of equilibrium for all temperatures between MeV and T ∼ 0.5

GeV. For Z ′ masses below MeV it becomes possible for the νR to go into equilibrium

below T ∼ MeV, leaving BBN unaffected. However, even in this case the thermalization

of νL, νR, and Z ′ after νL decoupling would leave an impact on Neff [503, 504], already

excluded by CMB data. As a result, we have to forbid νR/Z ′ thermalization for all

temperatures between eV (CMB formation) and T ∼ 0.5 GeV, updating Ref. [488]. which

gives the black exclusion line in Fig. ??. This existing Neff constraint is stronger than most

laboratory experiments, except for dilepton searches at the LHC. If future measurements

in SPT-3G, SO, and CMB-S4 push the ∆Neff bound below 0.14, the limits on Z ′ will

change dramatically to

g′ < 2 × 10−7
√

MZ′/TeV , (9.10)
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shown as a red dashed line in Fig. ??, because we have to demand that the νR

were never in equilibrium with the SM. Once again, this limit assumes that the Universe

reached a temperature of at least T ∼ MZ′/3, otherwise the bound weakens. Keeping these

assumptions in mind it is clear from Fig. ?? that the non-observation of ∆Neff in future

CMB experiments will make it impossible to find a Z ′ coupled to Dirac neutrinos in any

laboratory experiment. Turning this around, the observation of a U(1)B−L gauge boson in

a collider or scattering experiment would then prove that neutrinos are Majorana particles.

This conclusion is not limited to B −L but extends to other Z ′ [497,499,502,516,575,577]

or W ′ [517, 573, 574] models. In general, new gauge interactions of νR will face strong

constraints from CMB-S4 that will make it difficult to see the gauge bosons, say Z ′ or WR,

in any other experiment, in particular at the LHC. The particle content and the respective

quantum numbers of the model U(1)X (X = βY +B − L, β ∈ Re) is listed in Table 11.

The presence of three RHNs (one per generation) cancels gravitational and mixed chiral

anomalies of both gauge symmetries.

SU(3)C SU(2)L U(1)Y U(1)X

QL 3 2 1
6

β
6

+ 1
3

uR 3 1 2
3

2β
3

+ 1
3

dR 3 1 −1
3

−β
3

+ 1
3

LL 1 2 −1
2

−β
2

− 1
eR 1 1 −1 −β − 1
NR 1 1 0 −1

H 1 2 0 −β
2

Table 11 – The charges assigment to the particle content of the minimal U(1)X model
symmetry. Three RHNs (NR, j = 1, .., 3 ) are necessary to cancel, generation per generation,
the superposition of chiral anomalies. The minimal B−L model is the limit of β → 0. The
U(1)X gauge interaction becomes similar (up to a sign) to the SM hypercharge interaction

for β > 1 (“hyper-charge oriented” U(1)X)

9.3. Thermalization in the early Universe

Big Bang nucleosynthesis (BBN) describes successfully our Universe at temperatures

around MeV, and places strong bounds on the number of relativistic degrees of freedom.

The latter are typically parameterized via Neff , the effective number of neutrinos, predicted

to be 3 by the SM. We take Neff < 4 as a conservative 95% C.L. limit from BBN [572],

which in particular forbids the thermalization of our three light right-handed neutrinos νR,

and thus constrains the strength of the B − L gauge interactions that would put them

in equilibrium. The interaction rate of νR therefore has to be smaller than the Hubble

expansion rate H(T ) ∼ T 2/MPl around T ∼ 1 MeV. Such reasoning has long since been

used to constrain right-handed neutrino interactions [573, 574]. To calculate the thermally
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averaged interaction rate for ff ↔ νRνR induced by Z ′ exchange we follow Ref. [575]:

〈Γ(ff ↔ νRνR)〉 =
2

nνR
(T )

∫ d3~p

(2π)3

d3~k

(2π)3
fν(p)fν(k)

× vMσνRνR→ff (s) ,

(9.11)

with the Fermi–Dirac distribution fν(k) = (ek/T + 1)−1, the νR number density nνR
=

3ζ(3)T 3/2π2, and the Møller velocity vM. The interaction cross section σ is to be evaluated

at the center-of-mass energy s = 2pk(1−cos θ), θ being the angle between the two colliding

νR particles. Unlike Ref. [575], we do not restrict ourselves to the limiting case MZ′ ≫ T ,

but rather use the full Z ′ propagator. For MZ′ ∼ T , on-shell production of Z ′ becomes

possible and the interaction rate is resonantly enhanced, calculated most easily in the

narrow-width approximation for the Z ′ propagator

1

(s−M2
Z′)2 +M2

Z′Γ2
Z′

→ π

MZ′ΓZ′

δ(s−M2
Z′) . (9.12)

This step is equivalent to simply studying the inverse decay ff → Z ′, as has been done

recently in Ref. [576] in a similar context. The thermally averaged interaction rate between

right-handed neutrinos and massless fermions f via s-channel Z ′ exchange then takes the

form

〈Γ(ff ↔ νRνR)〉 = NC(f)[QB−L(f)]2
g′4

36π3ζ(3)
T (9.13)

×























π4

144
, x .

√
ǫ ,

1.15π
8

MZ′

ΓZ′

x3

ex−1
,

√
ǫ . x . 14

√
log ǫ−1 ,

49π8

2700
x−4 , x & 14

√
log ǫ−1 ,

(9.14)

with x ≡ MZ′/T and ǫ ≡ ΓZ′/MZ′ ≪ 1. Here, NC(f) [QB−L(f)] denotes the color

multiplicity [B − L charge] of fermion f . The rate reduces to the well-known limits for

off-shell Z ′ exchange 〈Γ〉 ∝ (g′/MZ′)4T 5 for MZ′ ≫ T and 〈Γ〉 ∝ g′4T for MZ′ ≪ T , but

is also applicable in the resonant region MZ′ ∼ T . Due to the thermal distribution of

plasma particles, the on-shell production (inverse decay) is feasible over a wide range

of temperatures, dominating the νR interaction rate roughly in the range
√
ǫ . x .

14
√

log ǫ−1. In this intermediate regime we find the function given in Eq. (9.14) that fits

well to the numerical results of the narrow-width approximation;4 in particular, it yields the

characteristic 〈Γ〉 ∝ g′2M2
Z′/T behavior for inverse decays for x < 1 (Recall the calculations

with the Z boson Eq. (3.6)) [576]. For x & 1, the rate is suppressed by a Boltzmann

factor e−x as expected. For the total rate one has to sum over all fermions f that are in

equilibrium at temperature T . Following our discussion of Z ′ branching ratios to light

hadrons, we only consider the coupling to leptons. We also reintroduce the lepton mass

4 Assuming Maxwell–Boltzmann statistics for the νR allows for an analytic evaluation of the
narrow-width integral and replaces the intermediate function in Eq. (9.14) by πx3K1(x)/4ǫ.
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thresholds in our numerical calculations to improve our accuracy. With the interaction

rate at our disposal, we can study νR thermalization; it is evident that the right-handed

neutrinos are either out of equilibrium during radiation domination (〈Γ〉 < H(T )), or go in

and out of equilibrium during some epoch. If the νR are in equilibrium and go out before

the Universe cools down to about T (νR) ∼ 150–200 MeV [577], they will contribute to Neff

in an entropy-suppressed fashion [573,574], namely ∆Neff < 1, compatible with current

data. For masses MZ′ > 10 GeV, the νR decoupling before T (νR) ∼ 150 MeV then gives

the well-known limits of the form MZ′/g′ > 6.7 TeV [575]. For 1 GeV < MZ′ < 10 GeV, the

limits on g′ strengthen considerably due to resonant Z ′ production, down to g′ < 6×10−9 at

MZ′ = 1 GeV. For lower masses, it becomes impossible to decouple at T (νR), and we have

to demand that the (resonant) interaction rate is smaller than H(T ) for all temperatures

1 MeV < T < 150 MeV.5 Brushing the resonance peak—sitting at x ≃ 2.8—against H(T )

then yields the limit g′ . 10−9
√

MZ′/100 MeV for 1 MeV .MZ′ < 1 GeV. For Z ′ masses

below MeV, we demand that the νR come in to thermal equilibrium after T ∼ 1 MeV, so

〈Γ〉(1 MeV) < H(1 MeV). Since the rate goes with 〈Γ〉 ∝ g′2M2
Z′/T initially, the limits are

of the form g′ . 3×10−7 keV/MZ′ , as expected from inverse decay [576]. (Note that such a

light Z ′ starts to contribute to Neff itself, in addition to the νR.) Finally, for MZ′ < 10 eV,

on-shell Z ′ production at BBN temperatures becomes sub-dominant to the off-shell rate

〈Γ〉 ∝ T and the limit becomes independent of MZ′: g′ < 2.5 × 10−5 [578]. Overall, we

find that BBN gives the strongest constraints on unbroken B − L for Z ′ masses between

100 MeV and 100 GeV, only briefly surpassed by BaBar. From keV to 100 MeV they are

however less stringent than stellar evolution bounds. Resonant Z ′ production dominates

over the previously used approximations for masses spanning nine orders of magnitude

(10 eV < MZ′ . 10 GeV), and is surely of interest for other models with mediator particles

in this range. We stress again that a thermalization of νR via Z ′ is not problematic for the

baryon-asymmetry mechanism neutrinogenesis [523], because the Z ′ interactions conserve

individual particle number and hence would not erase an existing νR asymmetry.

9.4. Cosmological phenomenology

To put observational constraints we use the Friedmann equation in the standard

FLRW cosmology. The comoving sound horizon rs and the angular diameter distance to

the surface of the last scattering DA are defined to be

rs =
∫ arec

0

cs(a)

a2H(a)
da, DA =

∫ 1

arec

da

a2H(a)
, (9.15)

where a = 1/(1+z) is the scale factor, cs(a) is the sound speed of hte photon-baryon

5 Because of this, only the limits for MZ′ & 1 GeV are sensitive to the precise bound we use for
Neff .
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plasma and arec is the scale factor at recombination epoch. As we can see in equation (9.15),

the limits on the integral show the evolution of the expansion rate of the universe, before,

during and after the recombination epoch, which occurs at a redshift of z∗ = 1089.92±0.25

at 68 percent CL from Planck 2018 (TT,TE,EE+lowE+lensing). The existence of an extra

radiation energy source during CMB epoch, where ∆Neff 6= 0, in general it reduces the

comoving sound horizon rs and thus can induce an increase in the current value of the

expansion rate of the universe, H0. On the other hand, The angle subtended by the sound

horizon at the recombination time is given by θs(z∗) = rs(z∗)/DA(z∗), which is a very

precise measure determined by final full-mission Planck 2018 measurements of the CMB

anisotropies as 100θs(z∗) = 1.04109±0.00030 at 68 percent CL (TT,TE,EE+lowE+lensing).

Thus, if rs(z∗) decreases, it is necessary to compensate with a decrease in DA(z∗), which

implies an increase in H0. This is the reason why to introduce extra radiation in the

form of ∆Neff , makes the H0 measure inferred from CMB experiments this closer to the

local measurements. As ∆Neff increases, additional suppression of CMB temperature

anisotropy power spectrum at small scales is generated, specifically in the range of the

so-called Silk damping, and therefore certain physical quantities have to be compensated

in order that these scales, which are very well determined, do not vary substantially.

Our model is: ΛCDM + Σmν + M
′

z, in a flat Universe. Following the Planck

collaboration, we fix the mass ordering of the active neutrinos to the normal hierarchy

with the minimum masses allowed by oscillation experiments, i.e., Σmν = 0.06 eV. In this

work, we consider two massive neutrino flavour ν1 and ν2, and one massless flavour. We

summarize below the data sets used in our analysis:

Cosmic Microwave Background (CMB): We consider a conservative data set

from Planck 2018 comprised of the likelihoods of temperature power spectrum TT, TE,

EE, low-polarisation and lensing reconstruction.

Baryon Acoustic Oscillations (BAO): The BAO is another important cos-

mological probe, which can trace expanding spherical wave of baryonic perturbations

from acoustic oscillations at recombination time through the large-scale structure corre-

lation function, which displays a peak around 150h−1Mpc. We use BAO measurements

from Sloan Digital Sky Survey (SDSS) III DR-12 at three effective binned redshifts z =

0.38, 0.51 and 0.61, reported in [587], the clustering of the SDSS-IV extended Baryon

Oscillation Spectroscopic Survey DR14 quasar sample at four effective binned redshifts

z = 0.98, 1.23, 1,52 and 1.94, reported in [588], and the high-redshift Lyman-α measure-

ments at z = 2.33 and z = 2.4 reported in [589] and [590], respectively. Note that the

observations are presented in terms of H(z) × (rd/rd,fid) km s−1Mpc−1, where rd is co-
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moving sound horizon and rd,fid is the fiducial input value provided in the above references.

Supernovae Type Ia (SN): The SN traditionally have been one of the most

important astrophysical tools in establishing the so-called standard cosmological model.

For the present analysis, we use the Pantheon compilation, which consists of 1048 SNIa

distributed in a redshift range 0.01 < z < 2.3 [591]. Under the consideration of a spatially

flat Universe, the full sample of Pantheon can be summarized into six model independent

E(z)−1 data points [592]. We consider the six data points reported by [593] in the form of

E(z), including theoretical and statistical considerations made by the authors there for its

implementation.

Cosmic Chronometers (CC): The CC approach is a powerful method to trace

the history of cosmic expansion through the measurement of H(z). We consider the

compilation of Hubble parameter measurements provided by [586]. This compilation

consists of 30 measurements distributed over a redshift range 0 < z < 2.

Galaxy Clusters (GC): The measurements from the abundance of GCs are a

powerful probe of the growth of cosmic structures. the cosmological information enclosed

in the cluster abundance is efficiently parametrized by S8 = σ8(Ωm/α)β, where σ8 is the

linear amplitude of fluctuations on 8 Mpc/h scale, and α, β are the fiducial value adopted

in each survey analysis.

Big Bang Nucleosynthesis (BBN): Under assumption that BBN proceeded

in the standard way, and that Neff remains constant between BBN and last scatter-

ing, we exploit the fact that Yp = 0.2449 ± 0.0040, 3He/H = (1.90 ± 0.06) × 10−5 and

D/H = (2.27 ± 0.04) × 10−5, is related to η10(Ωbh
2) and ∆Neff [594].

We use the publicly available CLASS [269] and Monte Python [266] codes for

constraining parameters of the models considered in the present work. We use Metropolis

Hastings algorithm with uniform priors on the model parameters to obtain correlated

Markov Chain Monte Carlo samples by considering two combinations of data sets: SN

+ BAO + GC + H(z) + BBN and SN + BAO + GC + H(z) + BBN + CMB. All

the parameter chains in our analysis converge according to the Gelman-Rubin criteria

1 −R < 0.01 [247].

Table 12 summarizes the main results of the statistical analysis carried out using

two different combinations for our model, SN + BAO + GC + H(z) + BBN and SN +
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Table 12 – Constraints at 95 per cent CL on parameters of the Model. The parameter h is
dimensionless,

∑

mν is in units of eV and Mz′ is in units of GeV.

Parameter SN + BAO + GC + H(z) + BBN SN + BAO + GC + H(z) + BBN + CMB
h 0.709 ± 0.012 0.70 ± 0.11

Ωm 0.245 ± 0.012 0.241 ± 0.010

∑

mν < 0.32 < 0.28

Mz′ < 17.2 < 12.8

σ8 0.814 ± 0.0181 0.828 ± 0.0172

BAO + GC + H(z) + BBN + CMB. Fig. 59 shows the parametric space for all parameters

of the Model and its correlations. In the standard scenario (three active neutrinos and

considering effects related to non-instantaneous neutrino decoupling), we have Neff ≃ 3.046.

As previously introduced, the presence of a dark radiation is usually parametrized in

the literature by ∆Neff ≃ Neff − 3.046. From our results, we can note that the upper

limits on Mz′ , exclude values above of 17.2 GeV with SN + BAO + GC + H(z) + BBN

and 12.8 GeV with SN + BAO + GC + H(z) + BBN + CMB, which is consistent with

previous studies (see for example [595]) and their average values are within the range of

thermalization that we demand (0.0018 GeV and 0.0019 for SN + BAO + GC + H(z) +

BBN and with SN + BAO + GC + H(z) + BBN + CMB, respectively).

Regarding the mass scale of neutrinos we can notice that is constrained to
∑

mν < 0.32 with SN + BAO + GC + H(z) + BBN and
∑

mν < 0.28 with SN +

BAO + GC + H(z) + BBN + CMB, at 95 percent CL, which is in good agreement with

the one obtained by Planck Collaboration [602]. From the plane h−∑

mν (Fig. 59), we

can note that no relevant changes are obtained with respect to the mass splitting, which

requires that
∑

mν < 0.1 to rule out the inverted mass hierarchy. However, these results

starts to favor the scheme of normal hierarchy. On the other hand, a fully thermalized ster-

ile neutrino is consistent at 95 per cent CL with planck TT,TE,EE+lowE+lensing+BAO

(i.e. meff
ν,sterile < 0.23 eV [595]) from SN + BAO + GC + H(z) + BBN ( meff

ν,sterile < 0.47

eV) and SN + BAO + GC + H(z) + BBN + CMB (meff
ν,sterile < 0.41 eV), results that have

been obtained from Eq. (9.9).

Finally, Fig. 59 shows us the likelihoods for h resulting from the two cases analysed

here (with and without CMB data), namely 0.709 ± 0.012 for SN + BAO + GC + H(z)

+ BBN and 0.70 ± 0.11 for SN + BAO + GC + H(z) + BBN + CMB. Changes in the

central value of H0 are not observed, and both cases return very similar fits with h ≃ 0.70.
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′

z and σ8 for our model, resulting from SN+BAO+GC+Hz+BBN
(Gray) and SN+BAO+GC+Hz+BBN+CMB (Purple) analysis.



227

That intermediate value in comparison with the local and global constraints can alleviate

the current tension on the Hubble constant. On the other hand, We find that the tension

in σ8 can be partially relieved, since, although the statistical confidence limits are wide,

there is a tendency towards high values of S8 and low values of Ωm (see Ωm − σ8 plane in

Fig. 59 and central vlues in Tab. 12).
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Chapter 10

Conclusions and perspectives

In this work, we have derived new constraints relative to the lepton asymmetry

through the degeneracy parameter by using the CMB angular power spectrum from the

Planck data and future CMB experiments like CORE and CMB-S4. We have analyzed

the impact of a lepton asymmetry on Neff where, as expected, we noticed very small

corrections on ∆Neff , but non-negligible corrections at the level of CMB-S4 experiments.

Within this cosmological scenario, we have also investigated the neutrino mass scale in

combination with the cosmological lepton asymmetry. We have found strong limits on
∑

mν , where the mass scale for both, CORE and CMB-S4 configurations, are well bound

to be
∑

mν < 0.1 eV at 95% CL, therefore, favoring a normal hierarchy scheme within

the perspective adopted here. As future perspective, it can be interesting to consider a

neutrino asymmetry interaction with the dark sector of the Universe, and to see how this

coupling can affect the neutrino and dark matter/dark energy properties, as well as to

bring possible new corrections on ∆Neff due to such interaction.

We have updated and improved the constraints on the neutrino properties within an

extended ΛCDM +Neff +
∑

mν + c2
eff + c2

vis + ξν scenario using HST and GC data as well as

CMB measurements. We find that c2
vis can minimally deviate from its standard value at 68

per cent CL. A significant increase on Neff can be seen, showing the possibility of presence

of some dark radiation such as a partly thermalized sterile neutrino or a Goldstone boson

when the GC data are added. The presence the GC data practically doubles the value of

the neutrino mass scale (see table 7). Cosmological constraints from GC can be affected

from several systematics, such as the biased mass-observable relation, multiplicative shear

bias, mean redshift bias, baryon feedback, and intrinsic alignment. Therefore, these small

increases on Neff that we noticed here could certainly due to systematic effects in GC data

compilation. The constrains on σ8 with and without GC are not really consistent, where
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we can easily see there a tension of approximately 2σ CL on σ8 (see Figures 48 and 49).

For a discussion aof this (new physics or systematic effects), we refer to [254] and references

therein. We do not find significant deviation for c2
eff and ξν . In the particular case of ΛCDM

+Neff +
∑

mν + ξν , no significant changes are observed in relation to the general case, and

therefore the conclusions about the properties of the free parameters are the same. In

both models, no mean deviations are found for the degeneracy parameter and ξν ≃ 0. It is

known that the neutrino properties can correlate in different ways with other cosmological

parameters. In the present work, we have considered the ΛCDM model to investigate the

constraints on the properties of the relic neutrinos. Recently, it has been discovered that

the presence of massive neutrinos in cosmic dynamics can lead to small deviations of the

ΛCDM scenario [255–259]. Therefore, it is plausible to consider a parametric space exten-

sion by including neutrinos properties to models beyond the ΛCDM model (phenomenology

of dark energy and modified gravity models). It can bring new perspectives in this direction.

Measurements of the radiation density in the early Universe, usually parametrized

via the effective number of neutrino species, have achieved incredible precision within

the last decade, thanks to experiments such as Planck. The ongoing SPT-3G experiment

and the future Simons Observatory and CMB-S4 experiment will further increase our

knowledge and reach sensitivities down to ∆Neff ≃ 0.06 (95% C.L.). This makes it

possible to detect or exclude new ultralight particles even if they decoupled very early in

the Universe. Here we show that one of the best motivations for such light particles comes

from the observation of neutrino oscillations. Indeed, if neutrinos are Dirac particles like

all other known fermions, we must extend the Standard Model by two or three practically

massless chirality partners νR. Models that address the Dirac stability, the smallness of

neutrino masses, or the matter–anti-matter asymmetry of our Universe typically endow the

νR with additional interactions that could lead to thermalization in the early Universe and

hence a measurable contribution to Neff . On the other hand, fostering the only ungauged

anomaly-free symmetry of the standard Model, U(1)B−L, to a local symmetry requires the

introduction of three RHN, which make neutrinos massive. It is, therefore, essential to

point out that there is currently no theoretical or phenomenological argument against an

unbroken U(1)B−L gauge symmetry featuring Dirac neutrinonos and neutrinogenesis to

explain the baryon asymmetry of the Universe. We can even give the new gauge boson Z’

mass MZ′ , a new dimensionful parameter disconnected from other scales. We have shown,

in particular, that a successful cosmological test provides strong constraints in the mass of

Z’ boson due to the resonant enhancement of the thermalization rate, previously unexplored.
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Finally I would like to mention that several methods have been proposed in order

to detect this cosmic neutrino background, which would be a milestone in the history of

physics, since we would be observing the universe approximately 1 second after the big

bang, thus leading us to a totally unexplored physics (For some references about it, please

check [596], [597] and [598]). However, being a purely experimental work, it is outside

the scope of this thesis, which also leaves new avenues for future projects. On the other

hand, from the theoretical-observational point of view, we also find new perspectives and

projections to explore, which means that new graduate theses can be proposed for the

future, not only from the UFJF physics department but not from other parts of Brazil and

this thesis lays the foundations for this new line of research that combines both particle

physics and cosmology.
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Chapter A

Appendix to chapter 5

“Without effort, you can’t pull a fish out of the pond.” – Russian proverb.

Perturbations in cosmology

As we have seen in Chapter 2, the assumption of homogeneous and isotropic

universe is very useful and productive, but it is reliable only on very large scales (above 200

Mpc). Its shortcomings become evident when we start to investigate how structures, such

as galaxies and their clusters, form, since these are huge deviations from the cosmological

principle. In this Chapter we address small deviations from the cosmological principle,

considering perturbations in the FLRW metric. This is the starting point of the incredibly

difficult task of understanding how structures form in an expanding universe, which

ultimately needs powerful machines and numerical simulations. The material for this

Chapter is mainly drawn from the textbooks [57], [131], [200] and from the papers/reviews

[21], [91], [134], [113]. We assume hereafter K = 0, both for simplicity and because we

have seen that there is strong observational evidence of a spatially flat universe. From

this Chapter on, we also start to adopt natural ~ = c = 1 units.

From the perturbations of the FLRW metric to the linearised Einstein tensor

Let ḡµν be the FLRW metric, and write it using the conformal time:

ḡµν = a2(η)(−dη2 + δijdx
idxj) . (A.1)
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This metric describes the background spacetime, or manifold. However, the background

spacetime is fictitious, in the sense that we are now considering deviations from homogeneity

and isotropy and therefore the actual physical spacetime is a different manifold described

by the metric gµν . Defining the difference:

δgµν(x) = gµν(x) − ḡµν(x) , (A.2)

at a certain spacetime coordinate x is an ill-posed statement because gµν and ḡµν are

tensors defined on different manifolds and x is a coordinate defined through different

charts. Even if we embed the two manifolds in a single one, still the difference between

two tensors evaluated at different points is an ill-defined operation. Therefore, in order to

make Eq. (A.2) meaningful, we need an extra ingredient: a map which identifies points of

the background manifold with those of the physical manifold. This map is called gauge,

is arbitrary and allows us to use a fixed coordinate system (a chart) in the background

manifold also for the points in the physical manifold. In other words, we shall still

use conformal or cosmic time plus comoving spatial coordinates even when describing

perturbative quantities. This property leads to the so-called problem of the gauge,

which we will briefly discuss later. For more details on these topics, see [176] and [118].

Metric gµν has in general 10 independent components that, in a generic gauge, we write

down in the following form:

gµν = a2(η)



















−[1 + 2ψ(η,x)] wi(η,x)

wi(η,x) δij[1 + 2φ(η,x)] + χij(η,x)



















, δijχij = 0 , (A.3)

where ψ, φ, wi, χij (i, j = 1, 2, 3) are functions of the background spacetime coordinates

xµ, in our case conformal time and comoving spatial coordinates.1 From now on we omit

their explicit functional dependence wherever possible, in order to keep a lighter notation.

As we mentioned above, the liberty of choosing a gauge allows us to fix a coordinate

system in the background manifold. The latter shall be one in which homogeneity and

isotropy are manifest, of course. Therefore, we could use any time parametrisation, though

we will employ conformal time the most because it has the important physical meaning of

the comoving particle horizon, and as for the spatial coordinates we shall always choose

the comoving ones for which at any given and fixed time the background spatial metric is

Euclidean, i.e. δijdx
idxj. For this reason, the perturbations in Eq. (A.3) can be regarded

1 The reason why ψ and φ are multiplied by 2 in the perturbed metric is just for pure future
convenience of calculation.
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as usual 3-vectors, defined from the rotation group SO(3). Let us elaborate more on this

point. Consider the coordinate transformation:

∂xµ

∂xν′ =











1 0

0 Ri
j











, (A.4)

where Ri
j is a rotation. By definition, a rotation is characterised by RTR = I, i.e. the

transposed matrix is also the inverse, hence δklR
k

iR
l
j = δij. Applying this transformation

to metric (A.3) we get:

g′
00 = g00 , g′

0i = Rk
ig0k , g′

ij = Rk
iR

l
jgkl , (A.5)

and hence, recalling that Rk
iR

l
jδkl = δij, we finally find:

ψ′ = ψ , w′
i = Rk

iwk , φ′ = φ , χ′
ij = Rk

iR
l
jχkl . (A.6)

Therefore, ψ and φ are two 3-scalars, wi (i = 1, 2, 3) is a 3-vector, χij is a 3-tensor

(i, j = 1, 2, 3) and the indices of wi and χij are raised and lowered by δij. Note that the 6

components of χij are not independent because δijχij = 0. In other words, χij is traceless

and we have already put in evidence the spatial trace of the metric through φ. One does

this also because the spatial intrinsic curvature depends only on φ, not on χij.
2 Now, if

the gauge chosen in Eq. (A.3) is such that:

|ḡµν | ≫ |δgµν | , (A.7)

then we are dealing with perturbations. They are considered small, or linear, or at first-

order if we neglect powers with exponent larger than one in the quantities themselves

and in their derivatives. Not only, also combinations among different perturbations are

neglected. For example, ψ2, φwi, w
iχij, φ

′φ and so on are all second order perturbations,

and therefore negligible. Let us see how this works when computing the Christoffel symbols

for metric (A.3). Substituting the decomposition (A.2) into the definition of Christoffel

symbol we have:

Γµ
νρ =

1

2
gµσ (gσν,ρ + gσρ,ν − gνρ,σ) =

1

2
ḡµσ (ḡσν,ρ + ḡσρ,ν − ḡνρ,σ)

1

2
ḡµσ (δgσν,ρ + δgσρ,ν − δgνρ,σ) +

1

2
δgµσ (ḡσν,ρ + ḡσρ,ν − ḡνρ,σ) , (A.8)

2 One can guess this by simply noting that the spatial curvature is a 3-scalar and one cannot
form any 3-scalar at first-order from χij since it is traceless.
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where the comma denotes the usual partial derivative. Note that we have assumed the same

decomposition of Eq. (A.2) also for the covariant components of the metric and neglected

terms such as δgµσδgσν,ρ, i.e. perturbative quantities multiplied by their derivatives. It is

important to realise that δgµσ is not simply δgµσ with indices raised by ḡµσ. Since

gµρgρν = δµ
ν , ḡµρḡρν = δµ

ν , (A.9)

because both are metrics, using Eq. (A.2), we can see that

δgµν = −ḡµρδgρσḡ
νσ (A.10)

In particular, in our scenario of cosmological perturbations, we shall write the total metric,

using the conformal time, as follows:

gµν = a2(ηµν + hµν) . (A.11)

Hence, the perturbed contravariant metric is the following:

δg00 = − 1

a2
h00 δg0i =

1

a2
δilh0l =

1

a2
h0i , δgij = − 1

a2
δilhlmδ

mj = − 1

a2
hij , (A.12)

where we have used our hypothesis that the indices of hij are raised by δij and the property

hij = hij. Do not be confused by the fact that δgµν is the perturbed covariant metric

but δgµν is not the contravariant perturbed metric. One does raise the indices of the

contravariant perturbed metric with the background one, but a minus sign must be taken

into account. This fact is not dissimilar from considering the Taylor expansion

1

1 + x
= 1 − x+ O(x2) . (A.13)

The perturbed Christoffel symbols

It is clear from Eq. (A.8) that we can decompose the affine connection as follows:

Γµ
νρ = Γ̄µ

νρ + δΓµ
νρ , (A.14)
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where the barred one is computed from the background metric only. Therefore, we can see

that

δΓµ
νρ =

1

2
ḡµσ

(

δgσν,ρ + δgσρ,ν − δgνρ,σ − 2δgσαΓ̄α
νρ

)

(A.15)

The background Christoffel symbols were calculated already in Chapter 2 but for the

FLRW metric written in the cosmic time. Then, the only non-vanishing background

Christoffel symbols are:

Γ̄0
00 =

a′

a
, Γ̄0

ij =
a′

a
δij , Γ̄i

0j =
a′

a
δi

j , (A.16)

where the prime denotes derivation with respect to the conformal time. One can make

the calculation directly from the FLRW metric written in the conformal time or use the

results already found in Eq. (2.35) for the FLRW metric written in the cosmic time and

use the transformation relation for the Christoffel symbol:

Γ̄′µ
νρ = Γ̄α

βγ

∂xβ

∂x′ν
∂xγ

∂x′ρ
∂x′µ

∂xα
+
∂x′µ

∂xσ

∂2xσ

∂x′ν∂x′ρ , (A.17)

where the primed coordinates are in the conformal time and hence:

∂x′0

∂x0
=

1

a
,

∂x′l

∂xm
= δl

m , (A.18)

being the other cases vanishing. It is a good and reassuring exercise to do in both ways

and check that the result is the same. First of all, we shall use mostly the conformal time

throughout these notes since, as we saw earlier, it represents the comoving particle horizon

and it will allow us to clearly distinguish the evolution of super-horizon (hence causally

disconnected) scales from sub-horizon ones. On the other hand, the most economic way to

compute the linearised Einstein equations is using the cosmic time and stopping to the

calculation of the Ricci tensor by considering the Einstein equations in the form

Rµν = 8πG
(

Tµν − 1

2
gµνT

)

, (A.19)

as done e.g. in [200]. It is the most economic way because in the cosmic time we have only

2 non-vanishing Christoffel symbols, whereas in the conformal time we have three, and

because we are spared to compute the perturbed Ricci scalar. Once done this calculation,

it is straightforward to come back to the conformal time. In the following we shall anyway
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go on using the conformal time, because it is a good workout. Compare the results found

here with those in [200, Chapter 5] using the tensorial properties:

Rµν = R̃ρσ
∂x̃ρ

∂xµ

∂x̃σ

∂xν
, hµν = h̃ρσ

∂x̃ρ

∂xµ

∂x̃σ

∂xν
, (A.20)

where the quantities with tilde are in the cosmic time. Since the change from cosmic to

conformal time does not affect the spatial coordinates, we have that:

R00 = R̃00a
2 , R0i = R̃0ia , Rij = R̃ij , (A.21)

and similarly for hµν . With this map, we can check the results that we are going to find

here with those in [200]. Mind that in [200] the Ricci tensor is defined with the opposite

sign with respect to ours here. We are now in the position of writing the perturbed

Christoffel symbols. We do so without leaving hµν explicit from Eq. (A.3). Find that:

δΓ0
00 = −1

2
h′

00 , δΓ0
i0 = −1

2
(h00,i − 2Hh0i) , (A.22)

δΓi
00 = h′

i0 + Hhi0 − 1

2
h00,i , (A.23)

δΓ0
ij = −1

2

(

h0i,j + h0j,i − h′
ij − 2Hhij − 2Hδijh00

)

, (A.24)

δΓi
j0 =

1

2
h′

ij +
1

2
(hi0,j − h0j,i) , (A.25)

δΓi
jk =

1

2
(hij,k + hik,j − hjk,i − 2Hδjkhi0) . (A.26)

The prime denotes derivative with respect to the conformal time. The indices might seem

unbalanced, but we have used the fact that hi0 and hij are 3-tensors with respect to the

metric δij and hence, for example, hi
0 = hi0. Recall that

H ≡ a′

a
, (A.27)

i.e. H is the Hubble factor written in conformal time.

The perturbed Ricci tensor and Einstein tensor

With this result we are going to compute the components of the perturbed Ricci

tensor. Recall that this is defined as:

Rµν = Γρ
µν,ρ − Γρ

µρ,ν + Γρ
µνΓσ

ρσ − Γρ
µσΓσ

νρ , (A.28)
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and hence, when substituting Eq. (A.14), we get

Rµν = Γ̄ρ
µν,ρ − Γ̄ρ

µρ,ν + Γ̄ρ
µνΓ̄σ

ρσ − Γ̄ρ
µσΓ̄σ

νρ

+δΓρ
µν,ρ − δΓρ

µρ,ν + Γ̄ρ
µνδΓ

σ
ρσ + δΓρ

µνΓ̄σ
ρσ − Γ̄ρ

µσδΓ
σ
νρ − δΓρ

µσΓ̄σ
νρ , (A.29)

by neglecting second order terms in the connection. It is clear that we can expand also

the Ricci tensor as:

Rµν = R̄µν + δRµν , (A.30)

and we compute now its perturbed components. After opening up all the sums, we can

see that:

δR00 = δΓl
00,l − δΓl

0l,0 − HδΓl
0l + 3HδΓ0

00 , (A.31)

and substituting the previous results, one gets:

δR00 = −1

2
∇2h00 − 3

2
Hh′

00 + h′
k0,k + Hhk0,k − 1

2
(h′′

kk + Hh′
kk) . (A.32)

Here we have defined δij∂i∂j ≡ ∇2 as the Laplacian in comoving coordinates. Note that

hkk = δlmhlm, i.e. in the present instance repeated indices are summed even if both

covariant or contravariant. Of course, we can repeat the above procedure also for the other

components. Find that:

δR0i = −Hh00,i − 1

2

(

∇2h0i − hk0,ik

)

+

(

a′′

a
+ H2

)

h0i − 1

2

(

h′
kk,i − h′

ki,k

)

, (A.33)

and

δRij =
1

2
h00,ij +

H
2
h′

00δij +

(

H2 +
a′′

a

)

h00δij

−1

2

(

∇2hij − hki,kj − hkj,ki + hkk,ij

)

+
1

2
h′′

ij + Hh′
ij +

(

H2 +
a′′

a

)

hij

+
H
2
h′

kkδij − Hhk0,kδij − 1

2
(h′

0i,j + h′
0j,i) − H(h0i,j + h0j,i) . (A.34)
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In the same way we decomposed metric (A.2), we decompose the Einstein tensor. We

shall work with mixed indices:

Gµ
ν = gµρRρν − 1

2
δµ

νR = ḡµρR̄ρν − 1

2
δµ

νR̄ + ḡµρδRρν + δgµρR̄ρν − 1

2
δµ

νδR , (A.35)

where Ḡµ
ν = R̄µ

ν − 1
2
δµ

νR̄ is the background Einstein tensor and depends purely from

the background metric ḡµν whereas

δGµ
ν = ḡµρδRρν + δgµρR̄ρν − 1

2
δµ

νδR , (A.36)

is the linearly perturbed Einstein tensor, which depends from both ḡµν and hµν . Compute

the perturbed Ricci scalar:

δR = gµνRµν = ḡµνδRµν + δgµνR̄µν . (A.37)

Expand the above expression and use formula (A.10) in order to find:

δR = − 1

a2
δR00 +

1

a2
δijδRij − a2hρσḡ

ρµḡσνR̄µν , (A.38)

and then, recalling that the background Ricci tensor is:

R̄00 = 3

(

H2 − a′′

a

)

, R̄ij = δij

(

H2 +
a′′

a

)

, (A.39)

one can write:

δR = − 1

a2
δR00 − 3

a2
h00

(

H2 − a′′

a

)

+
1

a2
δijδRij − 1

a2
hkk

(

H2 +
a′′

a

)

, (A.40)

Substituting the formulae for the perturbed Ricci tensor, one finds:

a2δR = ∇2h00 + 3Hh′
00 + 6

a′′

a
h00 − 2h′

k0,k − 6Hhk0,k

+h′′
kk + 3Hh′

kk − ∇2hkk + hkl,kl . (A.41)
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The second line represents a2δR(3), i.e. the intrinsic spatial perturbed curvature scalar.

Now, let us calculate the mixed components of the perturbed Einstein tensor. We can see

that:

2a2δG0
0 = −6H2h00 + 4Hhk0,k − 2Hh′

kk + ∇2hkk − hkl,kl (A.42)

and

2a2δG0
i = 2Hh00,i + ∇2h0i − hk0,ki + h′

kk,i − h′
ki,k (A.43)

and

2a2δGi
j =

[

−4
a′′

a
h00 − 2Hh′

00 − ∇2h00 + 2H2h00 − 2Hh′
kk

+∇2hkk − hkl,kl + 2h′
k0,k + 4Hhk0,k − h′′

kk

]

δi
j + h00,ij − ∇2hij

+hki,kj + hkj,ki − hkk,ij + h′′
ij + 2Hh′

ij − (h′
0i,j + h′

0j,i) − 2H(h0i,j + h0j,i) . (A.44)

Now we turn to the right hand side of the Einstein equations, i.e. the energy-momentum

tensor.

Perturbation of the energy-momentum tensor

In the following we shall use mostly the energy-momentum tensor defined through

the distribution function and its perturbation. However, let us see how to perturb the

background, perfect fluid energy-momentum tensor. This was introduced as:

T̄µν = (ρ̄+ P̄ )ūµūν + P̄ ḡµν , (A.45)

as the tensor describing a fluid with no dissipation, i.e. constant entropy along the flow3.

Let us rewrite T̄µν as follows:

T̄µν = ρ̄ūµūν + P̄ θ̄µν , θ̄µν ≡ ḡµν + ūµūν . (A.46)

3 We can compute ūν∇ν ū
µ, demand its vanishing and check via the second law of thermody-

namics that this corresponds to a constant entropy.
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The tensor θ̄µν acts as a projector on the hypersurface orthogonal to the four-velocity (We

know that θ̄µν ū
µ = 0.). This is an example of 3+1 decomposition, which is particularly

useful when we study a fluid flow, such that:

ρ̄ = T̄µν ū
µūν , 3P̄ = T̄µν θ̄

µν , T ≡ ḡµνT̄µν = −ρ+ 3P , (A.47)

i.e. the fluid density is the projection of the energy-momentum tensor along the 4-velocity of

the fluid element and the pressure is the projection of the energy-momentum tensor on the

3-hypersurface orthogonal to the four-velocity. The most general energy-momentum tensor,

which also includes the possibility of dissipation, can be then written by straightforwardly

generalising Eq. (A.46), i.e.

Tµν = ρuµuν + qµuν + qνuµ + (P + π)θµν + πµν (A.48)

where qµ is the heat transfer contribution, satisfying qµu
µ = 0 and thus contributing with 3

independent components; πµν is the anisotropic stress, it is traceless and satisfies πµνu
µ = 0,

hence providing 5 independent components. The trace of πµν is π, it is called bulk viscosity

and has been put in evidence together with the pressure. For more detail about dissipative

processes in cosmology and the above decomposition of the energy-momentum tensor, see

the review [114]. The anisotropic stress πµν is not necessarily related to viscosity, but

can exist for relativistic species such as photons and neutrinos because of the quadrupole

moments of their distributions, as we shall see later. On the other hand, heat fluxes and

bulk viscosity are related to dissipative processes, and we neglect them in these notes

starting from the next section. Now we consider the energy-momentum tensor of Eq. (A.48)

as made up of a background contribution plus a linear perturbation, i.e. we expand

ρ = ρ̄+ δρ(η,x) , P = P̄ + δP (η,x) , uµ = ūµ + δuµ(η,x) , (A.49)

which are the physical density, pressure and four-velocity, which, remember, depend on

the background quantities because of our choice of a gauge. The barred quantities depend

only on η, since they are defined on the FLRW background. Heat fluxes, bulk viscosity

and anisotropic stresses are purely perturbed quantities.4 Therefore, we have:

Tµν = T̄µν +δρūµūν + ρ̄δuµūν + ρ̄ūµδuν +qµūν +qν ūµ + θ̄µν(δP +π)+ P̄ δθµν +πµν , (A.50)

4 Bulk viscosity is compatible with the cosmological principle and can be contemplated also at
background level. It plays a central role in the so-called bulk viscous cosmology, see [208].
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where one can straightforwardly identify the perturbed energy-momentum tensor and

where

δθµν = hµν + δuµūν + ūµδuν . (A.51)

Now, recall that the background four-velocity satisfies the normalisation:

ḡµν ū
µūν = −1 . (A.52)

Let us choose a frame in which to make explicit the components of the energy-momentum

tensor. Of course, we use comoving coordinates, for which one has ūi = 0. From Eq. (A.52)

we have then

a2(ū0)2 = 1 , (A.53)

and we choose the positive solution ū0 = 1/a, which implies u0 = −a.5 When we choose

these coordinates, the relations qµu
µ = πµνu

µ = 0 imply that q0 = πµ0 = 0, i.e. the

heat flux and the anisotropic stress have only spatial components. We can calculate the

components of the energy-momentum tensor (A.50), such that:

T00 = ρ̄(1 + δ)a2 − 2a(ρ̄+ P̄ )δu0 + P̄ h00 , (A.54)

T0i = −a(ρ̄+ P̄ )δui − aqi + P̄ h0i , (A.55)

Tij = (P̄ + δP + π)a2δij + P̄ hij + πij , (A.56)

where we have introduced one of the main characters of these notes, the density contrast:

δ ≡ δρ

ρ̄
(A.57)

The density contrast is very important because describes how structure formation begins.

Note how the presence of perturbations in the four-velocity gives rise to mixed time-space

components in the energy-momentum tensor, i.e. the breaking of homogeneity and isotropy

allows for extra fluxes beyond the Hubble one. Note that the total four-velocity also

satisfies a normalisation relation, with respect to the total metric, i.e.

gµνu
µuν = −1 . (A.58)

5 It amounts to choose that the conformal time and the fluid element proper time flow in the
same direction.
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If we expand this relation up to the first order we find:

ḡµν ū
µūν + hµν ū

µūν + 2ḡµνδu
µūν = −1 . (A.59)

Using Eq. (A.52) and ūi = 0, we find that:

h00 + 2ḡ00aδu
0 = 0 , (A.60)

and thus we can relate the metric perturbation h00 to δu0 as follows:

δu0 =
h00

2a3
(A.61)

Care is needed when we want to compute the covariant components of the perturbed

four-velocity δuµ. These are not simply δuµ = ḡµνδu
ν . It is the same care we had to apply

when considering the relation between δgµν and hµν . So, let us define:

δui = avi (A.62)

with vi components of a 3-vector, i.e. its index is raised by δij so that vi = vi. Let us

compute now the components δui. We must start from the covariant expression for the

total four velocity, i.e.

ūµ + δuµ = uµ = gµνu
ν = gµν(ūν + δuν) , (A.63)

and expanding up to first order, we get

ūµ + δuµ = ḡµν ū
ν + ḡµνδu

ν + hµν ū
ν . (A.64)

Equating order by order we obtain ūµ = ḡµν ū
ν , as expected, and

δuµ = ḡµνδu
ν + hµν ū

ν (A.65)

so that

δuµ = ḡµνδuν − ḡµρhρν ū
ν (A.66)
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So, there is an extra term hµν ū
ν . This comes from the fact that ḡµν raises or lowers

indices for the background quantities only whereas gµν raises or lowers indexes for the full

quantities only, and δuµ is neither. From Eq. (A.65) and (A.66) we have that

δu0 =
h00

2a
, aδui = vi − 1

a2
hi0 (A.67)

We can rewrite the components of the energy-momentum tensor as:

T00 = ρ̄(1 + δ)a2 − ρ̄h00 , (A.68)

T0i = −a2(ρ̄+ P̄ )vi − aqi + P̄ h0i , (A.69)

Tij = (P̄ + δP + π)a2δij + P̄ hij + πij , (A.70)

In order to calculate the mixed components we use the standard relation:

T µ
ν = gµρTρν = ḡµρT̄ρν + ḡµρδTρν + δgµρT̄ρν . (A.71)

Also we can compute the mixed components of the energy-momentum tensor, such that:

T 0
0 = −ρ̄(1 + δ) , (A.72)

T 0
i =

(

ρ̄+ P̄
)

vi + a−1qi , (A.73)

T i
0 = −

(

ρ̄+ P̄
)

(vi − h0ia
−2) − a−1qi , (A.74)

T i
j = δi

j(P̄ + δP + π) + πi
j , (A.75)

where we have stipulated that δilπlja
−2 = πi

j. In the following we shall mainly use,

especially for photons and neutrinos, the energy-momentum tensor computed from kinetic

theory, i.e. Eq. (??):

T µ
ν =

∫ d3p
(2π)3

pµpν

p0
f , (A.76)

in which the distribution function is also perturbed:

f = f̄ + F (A.77)

thus allowing to define a perturbed energy-momentum tensor as follows:

δT µ
ν =

∫ d3p
(2π)3

pµpν

p0
F , (A.78)
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The momentum used here is the proper one which, recall, has the metric embedded in its

definition so that:

pi = pi , p2 = δijp
ipj , E = p0 , p0 = −E . (A.79)

These relations provide directly the mass-shell one E2 = p2 +m2 from gµνP
µP ν = −m2.

Note that we are assuming g0i = 0, also at perturbative level thanks to gauge freedom,

otherwise the relations above would be incorrect since the spatial metric would not be

gij but gij − g0ig0j/g00. See [95] for a nice explanation of this fact. Then, from the above

definition of perturbed energy-momentum, we have:

δT 0
0 = −

∫ d3p
(2π)3

E(p)F = −δρ , (A.80)

which makes sense, and is consistent with Eq. (A.72), because we are weighting the particle

energy with the perturbed distribution function. The mixed components are:

δT 0
i =

∫ d3p
(2π)3

piF = (ρ̄+ P̄ )vi , δT i
0 = −

∫ d3p
(2π)3

piF = −(ρ̄+ P̄ )vi , (A.81)

compatible with Eqs. (A.73) and (A.74) since we are assuming h0i = 0 (and neglecting

already the heat fluxes). Note the multiplication by ρ̄+ P̄ . Physically the integral gives

the perturbed spatial momentum density, which can be decomposed in the velocity flow

times the inertial mass density, which is ρ̄+ P̄ in GR. Finally:

δT i
j =

∫ d3p
(2π)3

pipj

E
F = δi

jδP + πi
j , (A.82)

from which we can define the perturbed pressure as the trace part:

δP =
1

3
δijδTij =

∫ d3p
(2π)3

p2

3E
F , (A.83)

and the anisotropic stress as the traceless part:

πi
j = δT i

j − 1

3
δi

jδ
lmδTlm =

∫ d3p
(2π)3

1

E

(

pipj − 1

3
δi

jp
2
)

F . (A.84)
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The evolution equations for the perturbations are given by the linearised Einstein

equations:

δGµ
ν = 8πGδT µ

ν . (A.85)

Unfortunately, Eq. (A.85) is not sufficient to completely describe the behaviour of both

matter and metric quantities if the fluid components are more than one. See e.g. [71].

We shall make use of the perturbed Boltzmann equations for each component of our

cosmological model.

The problem of the gauge and gauge transformations

As we have mentioned in the previous section, a gauge is a map between the points

of the physical manifold and those of the background one which allows us to define the

difference between tensors defined on the two manifolds. Suppose we change gauge from a

G to a Ĝ. Metric (A.3) then becomes:

gµν = a2(η)



















−[1 + 2ψ̂(η,x)] ŵi(η,x)

ŵi(η,x) δij[1 + 2φ̂(η,x)] + χ̂ij(η,x)



















, δijχ̂ij = 0 . (A.86)

We have new hatted functions representing perturbations depending again on the back-

ground coordinates, which we have fixed. A similar map can be defined also on the single

background manifold, so in absence of perturbations, and it can be deceiving, in the sense

that quantities similar to perturbations might appear even if we are in the background

manifold. Let us rephrase this. The problem when considering fluctuations in GR is that

we cannot be sure, by only looking at a metric, that there are real fluctuations about a

known background or it is the metric which is written in a not very appropriate coordinate

system. For example, consider the following time transformation for the FLRW metric:

dη = g(t,x)dt . (A.87)

Then, the FLRW metric becomes:

ds2 = −a(t,x)2g(t,x)2dt2 + a(t,x)2δijdx
idxj , (A.88)

and recalling back t → η we get:

ds2 = −a(η,x)2g(η,x)2dη2 + a(η,x)2δijdx
idxj . (A.89)
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Now the metric coefficients depend on the position so we may think that homogeneity and

isotropy are lost, but it was just a coordinate transformation. This is not the problem of

the gauge, but is the general covariance typical of GR. As we show above, it is not even

necessarily related to perturbations but it is just a coordinate transformation masking

the metric in the form that we are used to see it. Computing relativistic invariants or

Killing vectors allows to determine if the above is the FLRW metric or not. The problem

of the gauge is the dependence of the perturbations on the gauge. In the following we will

see how a gauge transformation manifests itself through a change of coordinates and deal

with the problem of the gauge by introducing gauge-invariant variables. Loosely speaking,

we will see that the gauge is the functional dependence of the perturbative quantities on

the coordinates, whereas the background quantities maintain their functional form. For a

more complete treatment of the gauge problem, see for example [176], [134] and [118].

Coordinates and gauge transformations

In order to understand how a gauge transformation changes the functional depen-

dence of the perturbative quantities we express the change from a gauge G to a gauge Ĝ
as the following infinitesimal coordinate transformation:

xµ → x̂µ = xµ + ξµ(x) , (A.90)

where xµ are the background coordinates and ξµ is a generic vector field, the gauge

generator, which must be |ξµ| ≪ 1 in order to preserve the smallness of the perturbation.

From a geometric point of view, we fix a point on the background manifold and by

changing gauge we change the corresponding point on the physical manifold. This point

has coordinates different from the first one and given by Eq. (A.90). The gauge generator

can be seen then as a vector field on the physical manifold and the Lie derivative of the

metric along ξ tells us how the perturbative quantities change their functional form. Under

a coordinate transformation, the metric tensor gµν , as well as any other tensor of the same

rank, transforms in the following way:

gµν(x) =
∂x̂ρ

∂xµ

∂x̂σ

∂xµ
ĝρσ(x̂) , (A.91)

which, using Eq. (A.90), can be cast as follows:

gµν(x) = (δρ
µ + ∂µξ

ρ) (δσ
ν + ∂νξ

σ) ĝρσ(x̂) . (A.92)
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Writing down Eq. (A.92) up to first order, one obtains:

gµν(x) = ĝµν(x) + ∂αĝµν(x)ξα + ∂µξ
ρĝρν(x) + ∂νξ

ρĝρµ(x) , (A.93)

where we have also expanded ĝρσ(x̂) about x using Eq. (A.90). We can see that Eq. (A.93)

can be cast in the following form:

gµν(x) = ĝµν(x) + ∂αgµν(x)ξα + ∂µξ
ρgρν(x) + ∂νξ

ρgρµ(x) , (A.94)

i.e. prove that we can remove the hat from the metric when it is multiplied by ξ. Then,

cast the above equation as follows:

gµν(x) = ĝµν(x) + ∇νξµ + ∇µξν . (A.95)

This equation shows how the functional form of the metric components, i.e. the gauge,

changes upon a coordinate transformation. If Eq. (A.90) is an isometry, i.e. gµν(x) = ĝµν(x),

one gets the Killing equation:

∇νξµ + ∇µξν = 0 . (A.96)

Now we use the perturbed FLRW metric (A.3) in Eq. (A.93), and we can see that at the

order zero:

â(η) = a(η) (A.97)

i.e. the scale factor maintains its functional form, confirming the property of the gauge,

which maintains the functional form of the background quantities. Then, show that at

first-order the following transformation relations hold:

ψ̂ = ψ − Hξ0 − ξ0′

ŵi = wi − ζ ′
i + ∂iξ

0 (A.98)

φ̂ = φ− Hξ0 − 1

3
∂lξ

l χ̂ij = χij − ∂jζi − ∂iζj +
2

3
δij∂lξ

l (A.99)

where ζi ≡ δilξ
l. We have introduced ζi in order not to make confusion with the spatial

part of ξµ, which is ξi = a2δilξ
l = a2ζi. In the very same fashion we adopted for the metric,

we can also find the transformation rules for the components of the energy-momentum
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tensor. That is, through the same steps that we have just used for the metric, we can

write:

T̂µν(x) = Tµν(x) − ∂αTµν(x)ξα − ∂µξ
ρTρν(x) − ∂νξ

ρTρµ(x) . (A.100)

Using the above transformation with Tµν given by Eq. (A.68)-(A.70), we find that at

zeroth order one has:

ˆ̄ρ(η) = ρ̄(η) ˆ̄P (η) = P̄ (η) (A.101)

i.e. the background density and pressure maintain their functional forms. Then, show that

at first order the following transformation relations hold:

δ̂ρ = δρ− ρ̄′ξ0 v̂i = vi + ∂iξ
0 q̂i = qi (A.102)

π̂ = π ˆδP = δP − P̄ ′ξ0 π̂ij = πij (A.103)

In order to find these relations you have to use those for the metric quantities. Moreover,

one obtains q̂i = qi noticing that ρ̄+ P̄ is arbitrary. One the other hand, we do not have a

mathematical way to separate the transformations for δP and π. We do that by giving

the physical argument by which π is related to dissipative processes whereas δP is not. In

general, perturbations of quantities which are vanishing or constant in the background are

automatically gauge-invariant and one can see this explicitly above for the heat flux, the

bulk viscosity and the anisotropic stress. This property is formalised in the Stewart-Walker

lemma [177]. It stimulates for example the use of the perturbed Weyl tensor (which is

vanishing in FLRW metric) and the quasi-Maxwellian equations [77], [85].

The Scalar-Vector-Tensor decomposition

The scalar-vector-tensor (SVT) decomposition was introduced by Lifshitz in 1946

[103], who was the first to address cosmological perturbations. See also [104] and [113], for

a particularly detailed account. It consists of the following procedure. We have already

seen that the perturbed metric can be written in terms of two scalars ψ and φ, a 3-vector

wi and a 3-tensor χij. However, we can “squeeze out” two more scalars from wi and χij

and one more vector from χij. Helmholtz theorem for a brief reminder) states that, under
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certain conditions of regularity, any spatial vector wi can be uniquely decomposed in its

longitudinal part plus its orthogonal contribution:

wi = w
‖
i + w⊥

i , (A.104)

which are respectively irrotational and solenoidal (divergenceless), namely:

ǫijk∂jw
‖
k = 0 , ∂kw⊥

k = 0 , (A.105)

where ǫijk is the Levi-Civita symbol.6 By Stokes theorem, the irrotational part can be

written as the gradient of a scalar say w so that, finally, we can write wi as follows:

wi = ∂iw + Si (A.106)

where we have defined Si ≡ w⊥
i , because it is simpler to write. Therefore, w is the scalar

part of wi and Si is the vector part of wi. Usually, when in cosmology one talks about a

vector perturbation one is referring to Si, i.e. to a vector which cannot be written as a

gradient of a scalar. Similarly to the vector case, any spatial rank-2 tensor say χij can be

decomposed in its longitudinal part χ
‖
ij plus its orthogonal part χ⊥

ij plus the transverse

contribution χT
ij:

χij = χ
‖
ij + χ⊥

ij + χT
ij , (A.107)

defined as follows:

ǫijk∂l∂jχ
‖
lk = 0 , ∂i∂jχ⊥

ij = 0 , ∂jχT
ij = 0 . (A.108)

Basically, one builds a vector by taking the divergence of χij and then applies Helmholtz

theorem to it. This implies that the longitudinal and the orthogonal parts can be further

decomposed in the same spirit of Eq. (A.105) in the following way:

χ
‖
ij =

(

∂i∂j − 1

3
δij∇2

)

2µ , χ⊥
ij = ∂jAi + ∂iAj , ∂iAi = 0 , (A.109)

where µ is a scalar, Ai is a divergenceless vector and recall that ∇2 ≡ δlm∂l∂m. We can

thus write χij in the following form:

χij =
(

∂i∂j − 1

3
δij∇2

)

2µ+ ∂jAi + ∂iAj + χT
ij (A.110)

6 Reminder: ǫ123 = 1 and it changes sign upon any odd permutation of its indices. It follows
that ǫijk = 0 if two or more indices are equal.
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The transverse part χT
ij cannot be decomposed in any scalar or divergenceless vector.

Therefore, it constitutes a tensor perturbation. The SVT decomposition is a fundamental

tool for the investigation of first order perturbations because the three classes do not mix

up and therefore they can be independently analysed. The absence of mixing is due to the

fact that any kind of interaction term among the three categories would be of second order

and therefore negligible. Let us see how each class of perturbations transforms. Apply

Helmholtz theorem also to the spatial part of ξµ as follows:

ξ0 ≡ α , ζi = ∂iβ + ǫi , (∂lǫl = 0) , (A.111)

where α and β are scalars and ǫi is a divergenceless vector. Now let us write the

transformations found in Eqs. (A.98) and (A.99) using the SVT decomposition:

ψ̂ = ψ − Hα− α′ , (A.112)

∂iŵ + Ŝi = ∂iw + Si − ∂iβ
′ − ǫ′

i + ∂iα , (A.113)

φ̂ = φ− Hα− 1

3
∇2β , (A.114)

(

∂i∂j − 1

3
δij∇2

)

2µ̂+ ∂jÂi + ∂iÂj + χ̂T
ij =

(

∂i∂j − 1

3
δij∇2

)

2µ

+∂jAi + ∂iAj + χT
ij − 2∂j∂iβ − ∂jǫi − ∂iǫj +

2

3
δij∇2β . (A.115)

We are now in the position of writing explicitly the transformation rules for each class of

perturbation.

Scalar perturbations and their gauge-invariant combinations

By taking the divergence ∂i of Eq. (A.113) and twice the divergence ∂i∂j of

Eq. (A.115), we eliminate all the vector and tensor contributions and are left with the

transformation equations for the scalar perturbations only:

ψ̂ = ψ − Hα− α′ , (A.116)

∇2ŵ = ∇2 (w − β′ + α) , (A.117)

φ̂ = φ− Hα− 1

3
∇2β , (A.118)

∇2∇2µ̂ = ∇2∇2(µ− β) . (A.119)

From the above transformations we obtain:
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ψ̂ = ψ − Hα− α′ (A.120)

ŵ = w − β′ + α (A.121)

φ̂ = φ− Hα− 1

3
∇2β (A.122)

µ̂ = µ− β (A.123)

In principle, we should have extra functions in the second and fourth equations, coming

from the integration of ∇2 and ∇2∇2, but these are spurious gauge modes which can be

set to zero without losing of generality. The following combinations of scalar perturbations

are gauge-invariant:

Ψ = ψ +
1

a
[(w − µ′) a]

′
Φ = φ+ H (w − µ′) − 1

3
∇2µ (A.124)

They are the famous Bardeen’s potentials [21]. In general, the Bardeen potentials are

gauge-invariant and there are only two of them. The same technique that we have just

used for the metric perturbations can be applied to the matter quantities in Eqs. (A.102)

and (A.103). Applying the SVT decomposition to vi:

vi = ∂iv + Ui , (∂lUl = 0) , (A.125)

we can see that, for scalar perturbations, one gets:

δ̂ρ = δρ− ρ̄′α ⇒ δ̂ = δ + 3H(1 + P̄ /ρ̄)α (A.126)

v̂ = v + α (A.127)

ˆδP = δP − P̄ ′α (A.128)

Note how a cosmological constant has gauge invariant perturbations. As we did earlier

for the geometric quantities, we can combine the above transformations for matter in

order to obtain gauge-invariant variables. The strategy is, in general, to combine the

transformations in order to eliminate α and β. The result is then manifestly gauge-invariant.

Using matter quantities only, we can eliminate α from Eqs. (A.126) and (A.128), thus

obtaining the following gauge-invariant perturbation:

Γ ≡ δP − P̄ ′

ρ̄′ δρ (A.129)
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This is the entropy perturbation. The ratio δP/δρ is called effective speed of sound, whereas

the ratio P̄ ′/ρ̄′ is called adiabatic speed of sound. When the two are equal, i.e. Γ = 0 one

finds dS = 0, i.e. one has adiabaticity. The other gauge-invariant combinations are:

δρ(gi)
m ≡ ρ̄∆ ≡ δρ+ ρ̄′v δP (gi)

m ≡ δP + P̄ ′v (A.130)

i.e. the gauge-invariant density, also called comoving-gauge density perturbation, and

pressure perturbations. The subscript m refers to “matter”, since it is also possible to

build gauge-invariant perturbations of the density and pressure using metric quantities.

We are borrowing this notation from [21]. We can now think of combining the geometric

and matter transformations, a total of 7 relations, trying to eliminate α and β in order to

create new gauge-invariant variables. Indeed, we can form the so-called comoving curvature

perturbation

R ≡ φ+ Hv − 1

3
∇2µ (A.131)

also known as Lukash variable [110], and we can form the quantity:

ζ ≡ φ+
δρ

3(ρ̄+ P̄ )
− 1

3
∇2µ (A.132)

which was introduced first in [23] but started to be exploited in [190]. These R and ζ are

especially important in the framework of inflation because they are conserved on large

scales and for adiabatic perturbations, as noticed in [21] (at least for R). Again, we can

form gauge-invariant density, velocity and pressure perturbations:

δρ(gi)
g ≡ δρ+ ρ̄′ (w − µ′) v(gi) ≡ v − (w − µ′) δP (gi)

g ≡ δP + P̄ ′ (w − µ′) (A.133)

In general, having 2 gauge variables α and β and 7 transformations, we can build 5

independent scalar gauge-invariant perturbations.

Vector perturbations and their gauge-invariant combinations

We can now eliminate the scalar contribution from Eq. (A.113) and consider the

divergence ∂j of Eq. (A.115). In this way we shall find the transformations for vector

perturbations:

Ŝi = Si − ǫ′
i (A.134)

∇2Âi = ∇2(Ai − ǫi) . (A.135)
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From the second equation, we can find the following transformation:

Âi = Ai − ǫi (A.136)

It is possible to define a new gauge-invariant vector potential, which has the following

form:

Wi ≡ Si − A′
i (A.137)

In general, Wi is gauge-invariant and there are only one gauge-invariant vector perturbation.

Using the SVT decomposition of Eq. (A.125), show that from the matter sector we just

have:

Ûl = Ul , (A.138)

i.e. the vector contribution of vi is already gauge-invariant.

Tensor perturbations

Since an infinitesimal gauge transformation, cf. Eq. (A.90), cannot be realised by

any rank-2 tensor, the following result is not unexpected:

χ̂T
ij = χT

ij (A.139)

i.e. that the transverse part of χij is already gauge-invariant.

Summary

We have thus seen that a generic perturbation of the metric can be split in:

• 4 scalar functions;

• 2 divergenceless 3-vectors, for a total of 4 independent components (2 each);

• A transverse, traceless spatial tensor of rank 2, χT
ij. It has 2 independent components.

The total number of independent components sums up to 10, as it should be. The above

decomposition holds true not only for the metric but for any rank-2 symmetric tensor.
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Gauges

Thanks to gauge freedom we can set any 4 components of the metric to zero. There

are two particularly useful choices: the synchronous gauge and the Newtonian gauge.

Synchronous gauge.

This is realised by the choice:

ψ̂ = 0 , ŵi = 0 . (A.140)

Note that ŵi = 0 means that both the scalar and the vector part of wi are being set to

zero. Using the transformations found in the previous subsection, we find:











































ψ − Hα− α′ = 0

w − β′ + α = 0

Si − ǫ′
i = 0

. (A.141)

This must be interpreted as a system of equations for the unknowns α, β and ǫi, i.e. from

a generic gauge we want to know which transformations we have to perform in order

to go to the synchronous gauge. We have 4 equation for 4 unknowns, so we expect to

determine a single solution. However, the above equations are differential and this implies

the following:











































α = 1
a

∫

dη aψ + f(x)

β =
∫

dη (w + α) + g(x)

ǫ′
i =

∫

dη Si + h(x)

. (A.142)

Since we have only time derivatives, the integrations give rise to purely space-dependent

functions, which we have called f , g and h here, and which are spurious gauge modes.

Newtonian gauge.

This is realised by the choice:

ŵ = 0 , µ̂ = 0 , χ̂⊥
ij = 0 . (A.143)
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Using the transformations found in the previous subsection, we find:











































w − β′ + α = 0

µ− β = 0

Ai − ǫi = 0

. (A.144)

It easy to see that the second and the third equation are algebraic and determine β and

ǫi. Substituting the solution for β into the first equation, we then find α. There is no

integration to perform, therefore no spurious gauge mode appears. An important fact that

makes the conformal Newtonian gauge somewhat special is that ψ̂ = Ψ and φ̂ = Φ, i.e.

the metric perturbations become identical to the Bardeen potentials. These lecture notes

are based on the use of the Newtonian gauge.

Transformations between the two gauges

It is useful to provide the transformation rules among the metric perturbations

in the two gauges, for those readers who might want to translate into the synchronous

gauge the results of these notes and comparing them with the huge literature in which this

gauge is employed. For the scalar case, using Eqs. (A.120)-(A.123) and assuming that the

hatted quantities are the synchronous ones whereas the non-hatted perturbations are the

conformal Newtonian ones, we get:

0 = ψN − Hα− α′ , (A.145)

0 = 0 − β′ + α , (A.146)

φS = φN − Hα− 1

3
∇2β , (A.147)

µS = −β . (A.148)

The second and the fourth equation completely specify the transformation in terms of µS,

i.e. we have:

α = β′ = −µ′
S (A.149)

and the metric potentials are related by:

ψN = −Hµ′
S − µ′′

S φN = φS − Hµ′
S − 1

3
∇2µS (A.150)
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In the literature, see e.g. [113], the Fourier transforms of φS and µS are usually named h

and 6η, respectively. For vector perturbations we have:

0 = Si
N − ǫi′

, (A.151)

Ai
S = 0 − ǫi , (A.152)

from which it is straightforward to obtain:

Si
N = −Ai′

S . (A.153)

Of course, tensor perturbations are naturally gauge-invariant and thus have the same

functional form in the two gauges. This is also true for any tensor of rank equal or higher

than 2.

Normal mode decomposition

We are now in the position of writing down explicitly the Einstein equations, fixing

a gauge of our choice, which will be the Newtonian one. We expect these equations to be

linear second order partial differential equations, given the perturbation scheme employed.

Because of this, it is very convenient to express the perturbations as superpositions of

normal modes, i.e. the eigenmodes Q(k,x) of the Laplacian operator, defined via the

Helmholtz equation:

∇2Q(k,x) = −k2Q(k,x) . (A.154)

For flat spatial slicing, which is considered here, this normal mode decomposition of course

amounts to a Fourier transform, i.e.

Q(k,x) = eik·x , (A.155)

and a given quantity X(η,x) is expressed as:

X̃(η,k) =
∫

d3x X(η,x)e−ik·x , X(η,x) =
∫ d3k

(2π)3
X̃(η,k)eik·x . (A.156)
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Consider for example the metric perturbations ψ, φ, wi and χij. For ψ and φ we simply

have that:

ψ(η,x) =
∫ d3k

(2π)3
ψ̃(η,k)eik·x , φ(η,x) =

∫ d3k
(2π)3

φ̃(η,k)eik·x , (A.157)

and similar expressions also apply for δρ and δP . Using its SVT decomposition in

Eq. (A.106), we have for wi the following Fourier transformation:

wi(η,x) =
∫ d3k

(2π)3
w̃i(η,k)eik·x =

∫ d3k
(2π)3

[ ˜∂iw(η,k) + S̃i(η,k)]eik·x . (A.158)

The Fourier transform of a partial spatial derivative is

˜∂iw(η,k) = ikiw̃(η,k) , (A.159)

and therefore we have:

wi(η,x) = i
∫ d3k

(2π)3
kiw̃(η,k)eik·x +

∫ d3k
(2π)3

S̃i(η,k)eik·x . (A.160)

So we see that the Fourier transforms of ψ or φ and w are not treated on an equal footing,

because w̃ is multiplied by a ki. A similar argument goes also for vi. Finally, doing the

same for χij in Eq. (A.110), one gets:

χij(η,x) =
∫ d3k

(2π)3

(

−kikj +
1

3
δijk

2
)

2µ̃(η,k)eik·x

+i
∫ d3k

(2π)3
[kjÃi(η,k) + kiÃj(η,k)]eik·x +

∫ d3k
(2π)3

χ̃T
ij(η,k)eik·x , (A.161)

with a similar expansion holding true for πi
j. We see that µ̃ is multiplied by a factor k2

and Ãi is multiplied by a factor k. Therefore, in order to properly compare perturbations,

par condicio is restored by “correcting” as follows:

w̃ ≡ −1

k
B̃ , ṽ ≡ −1

k
Ṽ , µ̃ ≡ 1

k2
Ẽ , Ãi ≡ − 1

2k
F̃i . (A.162)

In this way, all scalar quantities are treated on the same footing. Let us see what happens

to the comoving gauge density perturbation:

∆̃ = δ̃ + 3(1 + P̄ /ρ̄)
H
k
Ṽ (A.163)
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Since H ∝ 1/η, on sub-horizon scales, i.e. for kη ≫ 1, the density contrast becomes

gauge-invariant. We present this fact in Fig. 60, where we plot the evolution of the

modulus of the CDM density contrast δc as function of k and for z = 0, computed with

CLASS [100] in the synchronous (solid line) and Newtonian (dashed line) gauges.

��-� ��-� ����� ����� ����� �
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Figure 60 – Plot of the modulus of the CDM density contrast at z = 0 (today) as function
of k, using CLASS. The solid line is the result obtained using the synchronous gauge
whereas the dashed one is obtained using the Newtonian one. The initial conditions are
adiabatic and normalised in order to have R = 1. All the cosmological parameters have

been set, as default, corresponding to the Planck best fit of the ΛCDM model [13].

The plots in Fig. 60 are drawn for z = 0, hence the value of the Hubble parameter

is the Hubble constant, H0 = 3 × 10−4 h Mpc−1. Indeed, when k > H0 the two evolutions

coincide. Now we have to understand how to extract the scalar and vector part from a

full 3-vector quantity. Let us reformulate the FT of wi as follows:

w̃i(η,k) = −ik̂iB̃(η,k) + S̃i(η,k) . (A.164)

We see that we can isolate the scalar part of the FT transform of a 3-vector perturbation

by contracting it with ik̂i. Indeed:

ik̂iw̃i(η,k) = B̃(η,k) , (A.165)



259

because k̂iS̃i = 0, since ∂iSi = 0. The vector part is therefore obtained by subtracting the

scalar part:

S̃i =
(

δj
i − k̂j k̂i

)

w̃j . (A.166)

We can easily check that this formula satisfies k̂iS̃i = 0. For the traceless spatial metric

perturbation in Eq. (A.110), we can write:

χ̃ij = −
(

k̂ik̂j − 1

3
δij

)

2Ẽ − i

2
k̂jF̃i − i

2
k̂iF̃j + χ̃T

ij . (A.167)

Here the scalar contribution can be isolated by contracting with −3k̂ik̂j/2. In fact:

−3

2
k̂ik̂jχ̃ij = 2Ẽ . (A.168)

The vector contribution is obtained contracting once with 2ik̂i and using Eq. (A.168), i.e.

F̃i = 2i
(

δj
i − k̂j k̂i

)

k̂lχ̃jl . (A.169)

For the tensor part, we have:

χ̃T
ij =

(

δl
i − k̂lk̂i

) (

δm
j − k̂mk̂j

)

χ̃lm +
1

2
(δij − k̂ik̂j)k̂

lk̂mχ̃lm . (A.170)

and we can verify that k̂iχ̃T
ij = k̂jχ̃T

ij = 0 and δijχ̃T
ij = 0. Recall that χ̃ij is already traceless.

Einstein equations for scalar perturbations

In this section we focus on scalar perturbations and employ the Newtonian gauge.

Our perturbed metric is then:

g00 = −a(η)2[1 + 2Ψ(η,x)] , g0i = 0 , gij = a(η)2δij [1 + 2Φ(η,x)] , (A.171)

where we are employing the Bardeen potentials, exploiting the fact that w = µ = 0. In

metric (A.171) Ψ plays the role of the Newtonian potential and Φ is the spatial curvature

perturbation. If we calculate from scratch the perturbed Einstein tensor δGµ
ν from metric

(A.171), and do it again using also Eqs. (A.42)-(A.44), we obtain:
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a2δG0
0 = −6HΦ′ + 6H2Ψ + 2∇2Φ , (A.172)

a2δG0
i = 2∂i(Φ

′ − HΨ) , (A.173)

a2δGi
j =

[

−2Φ′′ − 4HΦ′ + 2HΨ′ + 4
a′′

a
Ψ − 2H2Ψ + ∇2(Φ + Ψ)

]

δi
j

−∂i∂j(Φ + Ψ) . (A.174)

Note again that ∂i = ∂i since it is the partial derivative with respect to comoving

coordinates and ∇2 = δlm∂l∂m is the comoving Laplacian. Being comoving, it is always

accompanied by a factor 1/a2, since together they form the physical Laplacian.

The relativistic Poisson equation

The 0 − 0 Einstein equation is the following:

−3HΦ′ + 3H2Ψ + ∇2Φ = 4πGa2δT 0
0 . (A.175)

Using the perturbed energy momentum tensor component δT 0
0, as we can read from

Eq. (A.72), we have:

3HΦ′ − 3H2Ψ − ∇2Φ = 4πGa2δρtot (A.176)

where the total perturbed density is

δρtot =
∑

i

δρi =
∑

i

ρiδi , (A.177)

i.e. it is the sum of the perturbed densities of all the material components that constitute

our cosmological model, in the same way that we did for the background. We start here

to eliminate the bar over the background quantities. We shall consider the ΛCDM as our

standard cosmological model. Thus, we have to deal with 4 contributions:

1. Photons;

2. Neutrinos;

3. CDM;

4. Baryons.
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Each of these has its own energy-momentum tensor and the total one, which enters the

right hand side of the Einstein equations, is their sum. The cosmological constant only

contributes at background level. We have found above the relativistic Poisson equation.

Indeed, if we consider a = 1, and hence H = 0, we recover the usual Newtonian Poisson

equation (or almost, since we have two potentials in GR). Written in terms of the density

contrast, using Eq. (A.72), the relativistic Poisson equation is the following:

3HΦ′ − 3H2Ψ − ∇2Φ = 4πGa2 (ρcδc + ρbδb + ργδγ + ρνδν) (A.178)

As one can see, Eq. (A.178) is a second order partial differential equation (PDE)

which is linear, because we are doing first-order perturbation theory and thus all the

perturbative variables appear with power 1. Because of this, as we anticipated, it is very

convenient to introduce the Fourier transform of the latter, thus transforming Eq. (A.178)

in a linear ordinary differential equation (ODE). Hereafter, we shall constantly employ the

Fourier transform, but drop the tilde above the transformed quantities as it customary in

cosmology because almost always one deals directly with the Fourier modes rather than

with the configuration space. Therefore, Eq. (A.178) Fourier-transformed and written in

the conformal time is the following:

3HΦ′ − 3H2Ψ + k2Φ = 4πGa2 (ρcδc + ρbδb + ργδγ + ρνδν) (A.179)

The equation for the anisotropic stress

The next Einstein equation that we present is the traceless part of δGi
j, which we

know from Eq. (A.75) to be related to the anisotropic stress πij. From Eq. (A.174), we

can calculate the trace and the traceless part of δGi
j, such that:

a2δGl
l = −6Φ′′ − 12HΦ′ + 6HΨ′ + 12

a′′

a
Ψ − 6H2Ψ + 2∇2(Φ + Ψ) , (A.180)

and then

a2δGi
j − 1

3
δi

ja
2δGl

l = −
(

∂i∂j − 1

3
δi

j∇2
)

(Φ + Ψ) . (A.181)

The Fourier transform of the latter can be written in the following form:

a2δGi
j − 1

3
δi

ja
2δGl

l = k2
(

k̂ik̂j − 1

3
δi

j

)

(Φ + Ψ) , (A.182)
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where we have used ki = kk̂i and k̂i is the unit vector denoting the direction of k. The

spatial traceless Einstein equation can thus be written as:

k2
(

k̂ik̂j − 1

3
δi

j

)

(Φ + Ψ) = 8πGa2πi
j, (A.183)

since πi
j is the spatial traceless part of the energy-momentum tensor, as we know from

Eq. (A.75). On the left hand side, we notice the same operator multiplying the scalar

contribution of χij in Eq. (A.167). Hence, only the scalar contribution of πi
j would

contribute on the right hand side. Indeed, contracting the above equation with k̂ik̂
j, as in

Eq. (A.168), we obtain:

k2(Φ + Ψ) = 12πGa2k̂ik̂
jπi

j. (A.184)

Our k̂ik̂
jπi

j corresponds to the −(ρ + P )σ used in [113]. We leave this equation as it

is for the moment. We shall see that k̂ik̂
jπi

j is sourced by the quadrupole moments of

the photon and neutrino distributions. This equation tells us that Φ = −Ψ, i.e. there

exists only one gravitational potential, unless a quadrupole moment of the energy content

distribution is present. For example, when CDM dominated the universe then Φ = −Ψ

but this is not the case in the early universe, because of neutrinos. Even when CDM or

DE dominates but the underlying theory of gravity is not GR one might have Φ 6= −Ψ.7

The equation for the velocity

The 0− i Einstein equation can be written using Eqs. (A.173) and (A.73) as follows:

∂i(Φ
′ − HΨ) = 4πGa2 (ρ+ P ) vi . (A.185)

Upon Fourier Transform we get:

iki(Φ
′ − HΨ) = 4πGa2 (ρ+ P ) vi , (A.186)

and now we must get the scalar part of this vectorial equation, contracting by ik̂i, as we

showed in Eq. (A.165). Hence, we get:

k(−Φ′ + HΨ) = 4πGa2 (ρ+ P )V (A.187)

7 One can probe the value of Φ + Ψ via weak lensing, which we do not address in these notes.
See e.g. [58] for a treatise on gravitational lensing.
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Comparing with the notation employed in [113], one has θ = kV . Note that the (ρ+ P )V

in the above equation is the total one, hence making explicit the various contributions one

has:

k(−Φ′ + HΨ) = 4πGa2
(

ρcVc + ρbVb +
4

3
ργVγ +

4

3
ρνVν

)

(A.188)

where we have considered the usual equations of state for the various components, i.e.

Pc = Pb = 0 and Pγ = ργ/3 and Pν = ρν/3.

The equation for the pressure perturbation

Using Eq. (A.180), we can immediately write down the last Einstein equation for

scalar perturbations:

Φ′′ + 2HΦ′ − HΨ′ − (2H′ + H2)Ψ +
k2

3
(Φ + Ψ) = −4πGa2δP (A.189)

We will use the previously derived transformations (A.150) from the Newtonian to the

synchronous gauge and write there the Einstein equations.

Einstein equations for tensor perturbations

Our perturbed FLRW metric, with tensor perturbations only, can be cast as follows:

g00 = −a2 , g0i = 0 , gij = a2(δij + hT
ij) , (A.190)

where hT
ij is divergenceless and traceless. Starting from metric (A.190) and calculating the

perturbed Einstein tensor δGµ
ν , and verify the calculations also using Eqs. (A.42)-(A.44),

we can see that the only non vanishing components are:

2a2δGi
j = hT ′′

ij + 2HhT ′

ij − ∇2hT
ij. (A.191)

Notice that the wave operator has appeared. The calculation of the above exercise is

pretty straightforward because the tensor nature of the perturbation hT
ij already suggests

that it cannot contribute to R00, R0i and the Ricci scalar R (at first-order). The tensor

part of the Einstein equations is thus:

hT ′′

ij + 2HhT ′

ij + k2hT
ij = 16πGa2πT

ij, (A.192)
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where πT
ij is the tensorial part of the anisotropic stress, which can be computed from the

total as in Eq. (A.170):

πT
ij =

(

δl
i − k̂lk̂i

) (

δm
j − k̂mk̂j

)

πlm +
1

2
k̂lk̂mπlm

(

δij − k̂ik̂j

)

. (A.193)

In Fourier space, the divergenceless condition can be written down as:

k̂ihT
ij = 0 . (A.194)

Therefore, hT
ij can be expanded with respect to a 2-dimensional basis {ê1, ê2} defined on

the 2-dimensional subspace orthogonal to k̂. The basis satisfies thus the condition:

γijea,ik̂j = 0 , γijea,ieb,j = δab , (A.195)

where γij is the metric on the 2-dimensional subspace and a, b ∈ {1, 2}. We can write then

hT
ij as follows:

hT
ij(k) = (e1,ie1,j − e2,ie2,j)(k̂)h+(k) + (e1,ie2,j + e2,ie1,j)(k̂)h×(k) . (A.196)

Note the dependence on k̂ of the combinations of the 2-dimensional basis vectors. In fact

these depend on the orientation of k̂. Substituting the above expansion into Eq. (A.192)

and in absence of quadrupole moments, h+,× satisfy then the equation:

h′′
+,× + 2Hh′

+,× + k2h+,× = 0, (A.197)

which we will employ in order to investigate the GW production during inflation. If we

choose a Cartesian reference frame and k̂ = ẑ, i.e. a propagation direction of a gravitational

wave along ẑ, then a natural choice is ê1 = x̂ and ê2 = ŷ and the perturbed metric can be

written as:

hT
ij(kẑ) =











h+ h× 0

h× −h+ 0

0 0 0











. (A.198)

Though this a convenient way of expressing hT
ij(kẑ), one usually prefers to use the combi-

nations:

h+ ∓ ih× , (A.199)
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since these have helicity ±2, see e.g. [194]. In order to see this, we apply a rotation about

ẑ and calculate how hT
ij(kẑ) transforms. We can apply the rotation:

Ri
j(θ) =











cos θ − sin θ 0

sin θ cos θ 0

0 0 1











, (A.200)

about the ẑ axis to hT
ij, and compute the components:

h̄T
lm = Ri

lR
j
mh

T
ij , (A.201)

and therefore we can see that:

h̄+ = cos2 θh+ + 2 sin θ cos θh× − sin2 θh+ = cos 2θh+ + sin 2θh× , (A.202)

h̄× = cos2 θh× − 2 sin θ cos θh+ − sin2 θh× = cos 2θh× − sin 2θh+ . (A.203)

Hence, the aforementioned combinations h+ ± ih× transform as:

h̄+ ± ih̄× = e∓2iθ(h+ ± ih×) (A.204)

and have thus helicity ∓2. Sometimes the sign could be a bit confusing depending in

which sense the rotation is performed. By convention, θ > 0 denotes an anti-clockwise

rotation so a rotation of θ about the ẑ axis corresponds to a −θ rotation about the −ẑ
axis, which is the line of sight and therefore the relevant direction for the observer. So,

the observed helicities have opposite sign with respect to the propagating ones. So, we

write the total tensor perturbation as a sum over the helicities:

hT
ij(η, kẑ) =

∑

λ=±2

eij(ẑ, λ)h(η, kẑ, λ) , (A.205)

where:

e11(ẑ,±2) = −e22(ẑ,±2) = ∓ie12(ẑ,±2) = ∓ie21(ẑ,±2) =
1√
2
, (A.206)

and of course e3i = ei3 = 0. Therefore, from Eq. (A.205) we get:

h+(η, kẑ) =
1√
2
h(η, kẑ,+2) +

1√
2
h(η, kẑ,−2) , (A.207)

h×(η, kẑ) =
i√
2
h(η, kẑ,+2) − i√

2
h(η, kẑ,−2) , (A.208)
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and inverting:

√
2h(η, kẑ,+2) = h+(η, kẑ) − ih×(η, kẑ) , (A.209)

√
2h(η, kẑ,−2) = h+(η, kẑ) + ih×(η, kẑ) . (A.210)

For k in a generic direction, we have that:

hT
ij(η,k) =

∑

λ=±2

eij(k̂, λ)h(η,k, λ) , (A.211)

where the polarisation tensor is defined as:

eij(k̂,±2) =
√

2e±,ie±,j , (A.212)

where the polarisation vectors are:

e±,i(k̂) ≡ (e1 ± ie2)i√
2

. (A.213)

Of course eij(k̂, λ) has the same symmetry of hT
ij(η,k) and thus is traceless and transverse,

i.e.

k̂lelm(k̂, λ) = 0 , (A.214)

Again, the two h(η,k,±2) satisfy the same Eq. (A.197) as for h+,×. When we will discuss

about the effect of GW on photon propagation and CMB we shall have then to deal

with two directions: one is the GW direction k̂ and the other is the photon direction of

propagation, p̂. In general a frame k̂ = ẑ is chosen in order to simplify the calculations.

But then, before taking the anti-Fourier transform and obtaining the physical quantities

in the real space one has to remember of performing a rotation which brings k̂ back in a

generic direction.

Einstein equations for vector perturbations

Finally, we address vector perturbations. The vector-perturbed FLRW metric, in

the Newtonian gauge, has the following form:

g00 = −a2 , g0i = 0 , gij = a2(δij + hV
ij) , (A.215)
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where

hV
ij = ∂iAj + ∂jAi , (A.216)

and Ai is a divergenceless vector, i.e. ∂iA
i = 0. We can repeat the same calculations

performed in the tensor case but now for hV
ij . Notice a very important difference: hV

ij

is traceless but not divergenceless. We can compare the results with those found using

Eqs. (A.42)-(A.44). Show that the non-vanishing components of the perturbed Einstein

tensor are:

2a2δG0
i = −∂lh

V ′

li = −∇2A′
i , (A.217)

2a2δGi
j = hV ′′

ij + 2HhV ′

ij = (∂iAj + ∂jAi)
′′ + 2H(∂iAj + ∂jAi)

′ . (A.218)

With the Laplacian missing, the last equation has no more the wave behaviour that the

corresponding tensor equation has. With no vector sources, show then that in the early,

radiation-dominated universe, for which H = 1/η, one has:

hV
ij ∝ 1/η2 , (A.219)

and hence vector perturbations vanish, if not sourced. Einstein equations are thus:

kF ′
i = −32πGa2(ρ+ P )Ui , (A.220)

(ik̂iFj + ik̂jFi)
′′ + 2H(ik̂iFj + ik̂jFi)

′ = −32πGa2πV
ij , (A.221)

where Ui is the vector part of vi, defined in Eq. (A.125), Fi is defined in Eq. (A.162) and

πV
ij is the vector part of the anisotropic stress, defined as from Eq. (A.169):

πV
ij = 2i

(

δm
i − k̂mk̂i

)

k̂lπlmk̂j + 2i
(

δm
j − k̂mk̂j

)

k̂lπlmk̂i , (A.222)

Of course, we have that:

k̂iFi = 0 , k̂iUi = 0 , k̂ik̂jπV
ij = 0 . (A.223)

Contracting the second Einstein equation with ik̂j leaves us with:

F ′′
i + 2HF ′

i = 32πGa2ik̂jπV
ij (A.224)
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We choose, as in the tensor case, to align k̂ to ẑ. Therefore, the divergenceless of Ai implies

that

ikiAi = 0 ⇒ A3 = 0 , (A.225)

and from Eq. (A.216) we have:

hV
ij = ikiAj + ikjAi = − i

2
k̂iFj − i

2
k̂jFi . (A.226)

So, hV
ij can be written as follows:

hV
ij =











0 0 −iF1/2

0 0 −iF2/2

−iF1/2 −iF2/2 0











. (A.227)

Applying the same rotation about ẑ as we did for tensor perturbations, we obtain:

F̄1 = F1 cos θ − F2 sin θ , (A.228)

F̄2 = F1 sin θ + F2 cos θ . (A.229)

Hence we have:

F̄1 + iF̄2 = (F1 + iF2)e
iθ , (A.230)

F̄1 − iF̄2 = (F1 − iF2)e
−iθ , (A.231)

and therefore the quantities:

F± ≡ F1 ± iF2 , (A.232)

are fields with helicity ±1.

Overview of cosmological perturbations including CνB

In this last section I will present a general summary of the basic equations for

linear perturbations that will be used in subsequent chapters, for the different species that

constitute the inventory of the universe.

• Dark matter:

δ′ + ikv = −3Φ′ Continuity (A.233)
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v′ +
a′

a
v = −ikΨ Euler (A.234)

• Baryons with photons interactions:

δ′
b + ikvb = −3Φ′ Continuity (A.235)

v′
b +

a′

a
vb = −ikΨ +

τ ′

R
(vb + 3iΘ1) Euler (A.236)

• Photon temperature:

Θ =
∆T

T
(A.237)

Θ′ + ikµΘ = −Φ′ − ikµΨ − τ ′
(

Θ0 − Θ + µvb − 1

2
P2 (µ) Θ2

)

(A.238)

• Gravity:

k2Φ + 3
a′

a

(

Φ′ − Ψ
a′

a

)

= 4πGa2 (ρmδm + 4ρrΘr,0) (A.239)

k2 (Φ + Ψ) = −32πGa2ρrΘr,2 (A.240)

• Neutrinos equations for continuity, Euler and shear:

δ′
ν + 3

a′

a

(

c2
eff − wν

)

δ = − (1 + wν)

(

Θν +
h′

2

)

+ 9
a′

a

2

(1 + wν)
(

c2
eff − c2

g

) Θν

k2
(A.241)

Θ′
ν +

a′

a

(

1 − 3c2
eff

)

Θ =
c2

eff

1 + wν

k2 − k2σν (A.242)

σ′
ν + 3

(

1

τ
+
a′

a

[

2

3
− c2

g − Ppseudo

3P

]

)

σν =
8

3

c2
vis

1 + wν

(Θν + h′) (A.243)
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Figure 61 – Interactions between the different forms of matter in the universe.

We derived the evolution equations for all matter and metric perturbations. In

principle, we could now solve these equations. The complex interactions between the

different species (see Fig. 61 ) means that we get a large number of coupled differential

equations. This set of equations is easy to solve numerically and this is what is usually

done. However, our goal in next chapters is to obtain some analytical insights into the

basic qualitative features of the solutions.
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Chapter B

Appendix to chapter 7, 8 & 9

In this section we investigate in some detail the freeze-out and relic abundance of

CDM. In general, with thermal relic one refers to the abundance of a certain species left

over from the annihilation suffered in thermal bath and, after its decoupling, from the

dilution caused by the expansion of the universe. To this purpose, consider the following

process:

X + X̄ ↔ l + l̄ , (B.1)

where X represents the DM particle and l a lepton. Due to the expansion of the universe,

at a certain point the annihilation of DM is no more efficient and thus its abundance is

fixed. This is precisely what we want to calculate. We could then put constraints on

the cross-section of the above process and on the mass of the DM particle by measuring

the abundance of DM necessary today in order to be in agreement with the cosmological

observations. We are assuming here that DM is made up of massive particles which were

in thermal equilibrium with the rest of the standard model particles in the primordial

universe, hence the name thermal relics. Moreover, since we are considering CDM, or

more in general particle which decouple from the primordial plasma when nonrelativistic,

ours is a calculation of cold relics abundance. The Boltzmann equation for the above

process has the following form:

1

a3

d(nXa
3)

dt
= 〈σv〉

(

n
(0)2
X − n2

X

)

, (B.2)

where we have assumed n
(0)
l = nl, because we are in thermal bath with very high

temperature (e.g. larger than 100 GeV for WIMPs). Now we take advantage of the scaling
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T ∝ 1/a and define the following dimensionless quantities:

Y ≡ nX~
3

(kBT )3
, Yeq ≡ n

(0)
X ~

3

(kBT )3
, x ≡ mc2

kBT
, λ ≡ (mc2)3〈σv〉

H(m)~3
, (B.3)

where H(m) = H(x = 1) is the Hubble parameter corresponding to a thermal energy

kBT = mc2, with m being the mass of the DM particle. Note that, being deep in the

radiation-dominated era, the Hubble parameter scales as follows:

H =
H(x = 1)

x2
. (B.4)

The Boltzmann equation thus becomes:

(kBT )3

~3

dY

dx

H(x = 1)

x
= 〈σv〉(kBT )6

~6

(

Y 2
eq − Y 2

)

, (B.5)

and finally

dY

dx
= − λ

x2

(

Y 2 − Y 2
eq

)

(B.6)

In this case Saha equation is simply Y = Yeq and from Eq. (4.71) we know that Yeq → 0

for x → ∞, because of the dilution due to the cosmological expansion. On the other

hand, we also expect, as we saw for recombination, that Y attains an asymptotic value

which we call Y∞ and with which we shall calculate the present abundance of DM. The

departure between the Saha equation solution and the Boltzmann equation solution is the

freeze-out and, as we know, it takes place approximately when Γ ∼ H. Using Eq. (4.71)

in order to express Yeq, we can numerically solve Eq. (B.6). In order to do this, we set a

small initial value x = xi such that Y (xi) = Yeq(xi) and fix λ to be a constant. In Figs. 62

and 63 we choose xi = 0.01 and λ = 1, 10, 100 for a fermionic DM species.

From Fig. 62 one can appreciate that Y attains a residual abundance and that, as

expected, the latter is smaller the larger λ is. This happens because for larger values

of λ the interaction is more efficient. In Fig. 63 we show the behaviour of the relative

difference Y/Yeq − 1 in order to understand when the freeze-out approximately takes place.

Of course, the freeze-out is not a specific instant, but depends on a criterion that we

choose. For example, from inspection of Fig. 63, we see that Y/Yeq − 1 at x ≈ 10 starts to

increase with more steepness and therefore we might establish that xf ≈ 10. Moreover,

this value is very weakly dependent on λ.

Now, what is the difference between fermionic and bosonic DM? In Fig. 64 we plot Y in

the bosonic DM (solid lines) and fermionic DM (dashed lines) for λ = 10, 100. As one can

see, there are two differences: i) When x is small the baryonic abundance is larger than
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Figure 62 – Numerical solution of Eq. (B.6) for the case of fermionic DM.
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Figure 63 – Relative difference Y/Yeq − 1.
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the fermionic one (because of the ±1 at the denominator of the distribution function) of a

factor 4/3; ii) for large x, the larger λ is, the smaller becomes the difference between the

fermionic and bosonic relic abundances.

���� ���� � �� ��� ����

����

����

����

Figure 64 – Comparison of the numerical solutions of Eq. (B.6) for the cases of bosonic
DM (solid lines) and fermionic DM (dashed lines) and λ = 10 (top two lines) and λ = 100

(bottom two lines, almost superposed).

We now relate the relic abundance to the DM annihilation cross-section. For x ≫ 1

we know that Yeq is vanishing, and the Boltzmann equation can be written as:

dY

dx
≈ − λ

x2
Y 2 , (B.7)

whose solution is:
1

Y∞
− 1

Yf

≈ λ

xf

. (B.8)

We have again considered here a constant λ, for simplicity. As we can see from Fig. 62,

Yf − Y∞ > 0 and the difference gets larger the larger λ is. Moreover, xf ≈ 10, so that we

can simplify

Y∞ ≈ 10

λ
. (B.9)

When Y has attained Y∞, the abundance of particle is fixed and their number density

starts to be diluted as nX ∝ a−3. Therefore, we can can write down the present-time

energy density as follows:

ρX0 = n1m
a3

1

a3
0

= mY∞
(kBT1)

3

~3

a3
1

a3
0

=
10m

λ

(kBT0)
3

~3

(

a3
1T

3
1

a3
0T

3
0

)

. (B.10)
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We have introduced here the photon temperature (the only one we can measure). The ratio

between parenthesis is not just equal to 1. We have seen an example of this discrepancy

when we calculated the photon-neutrinos temperatures ratio. The reason is that not all

along the cosmological evolution T decays as the inverse scale factor. When there are

processes such as electron-positron annihilation, more photons are injected in the thermal

bath and the temperature scales in a milder way than 1/a. It is now time to tackle more

seriously the issue of the effective numbers of relativistic degrees of freedom.

The effective numbers of relativistic degrees of freedom

Let T be the photon temperature, which we always use as reference since it is the

only one we can measure, from CMB. In Eq. (B.13), we wrote the energy density of all

the relativistic species in the following way:

ε =
π2(kBT )4

30(~c)3
g∗ , (B.11)

where, actually g∗ = g∗(T ) because when kBT drops below the mc2 of a species, this

becomes non-relativistic and is removed from the above equation. Thus g∗ varies, but very

rapidly close to the thresholds of the mass energies. Far from those, g∗ it is practically

constant.

In Fig. 65 we plot g∗ calculated from Eq. (B.12) and Eq. (B.13) for the species of Table 13.

The residual non-vanishing value of g∗(T ) for low temperatures is due to the massless species,

i.e. photons and neutrinos. Note that this plot is just an illustrative example, because it

employs Eq. (B.12) during the entire evolution, i.e. it assumes thermal equilibrium all the

time, and, moreover, the QCD phase transition at 200 MeV and the difference between

photon and neutrino temperature after electron-positron annihilation at 0.5 MeV have

been put “by hand”. The correct calculation should employ the energy density obtained

from the solutions of the Boltzmann equations of the various species, which correctly track

the evolutions when Γ ∼ H, i.e. out of equilibrium. The effective numbers of relativistic

degrees of freedom gets two contributions. One from the relativistic particles that are in

thermal equilibrium with the photons:

gtherm
∗ ≡

∑

i=bosons

gi +
7

8

∑

i=fermions

gi , (B.12)

and another from the relativistic particles that are no more in thermal equilibrium with
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Figure 65 – Evolution of g∗ calculated from Eq. (B.12) and Eq. (B.13) for the species
of Table 13 and constraints on additional relativistic particles. Top:Evolution of the
effective degrees of freedom for Standard Model particle density, g∗, as a function of photon
temperature in the early Universe. Vertical bands show the approximate temperature
of neutrino decoupling and the QCD phase transition, and dashed vertical lines denote
some mass scales at which corresponding particles annihilate with their antiparticles,
reducing g∗. Note the QCD phase transition at 200 MeV and the difference between
photon and neutrino temperature after electron-positron annihilation at 0.5 MeV. The
solid line shows the fit of [599] plus standard evolution at Tγ < 1 MeV, and the pale blue
bands the estimated ±1σ error region from [600]. Numbers on the right indicate specific
values of g∗ expected from simple degrees of freedom counting. Bottom: Expected ∆Neff

today for species decoupling from thermal equilibrium as a function of the decoupling
temperature, where lines show the prediction from the [599] fit assuming a single scalar
boson (g = 1, blue), bosons with g = 2 (e.g., a massless gauge vector boson, orange), a
Weyl fermion with g = 2 (green), or fermions with g = 4 (red). One-tailed 68% and 95%
regions excluded by planck TT,TE,EE+lowE+lensing+BAO are shown in gold; this rules
out at 95% significance light thermal relics decoupling after the QCD phase transition
(where the theoretical uncertainty on g∗ is negligible), including specific values indicated
on the right axis of ∆Neff = 0.57 and 1 for particles decoupling between muon and positron
annihilation. At temperatures well above the top quark mass and electroweak phase
transition, g∗ remains somewhat below the naive 106.75 value expected for all the particles
in the Standard Model, giving interesting targets for ∆Neff that may be detectable in
future CMB experiments (see e.g. [601]). You can find this plot at [602] and an extensive

discussion of its content right there.
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the photons:

gdec
∗ ≡

∑

i=bosons

gi
T 4

i

T 4
+

7

8

∑

i=fermions

gi
T 4

i

T 4
. (B.13)

The latter are basically neutrinos only. Why do we insist on relativistic species? Because,

as we showed, these are the only one which contribute to the entropy density s:

s =
2π2k4

BT
3

45(~c)3
g∗S (B.14)

where g∗S is the effective number of degrees of freedom for the entropy. Now, also to g∗S

contribute species which are in thermal equilibrium with the photons and for which:

gtherm
∗S = gtherm

∗ =
∑

i=bosons

gi +
7

8

∑

i=fermions

gi , (B.15)

and species that are no more in thermal equilibrium with the photons and for which:

gdec
∗S =

∑

i=bosons

gi
T 3

i

T 3
+

7

8

∑

i=fermions

gi
T 3

i

T 3
6= gdec

∗ . (B.16)

Because of the last inequality, due to the different scaling of s and ε with the temperature,

we expect g∗ 6= g∗S. Now, sa3 is a very useful quantity since it is conserved, as we showed

earlier. When a species becomes non-relativistic, its contribution to s is exponentially

suppressed as exp(−mc2/kBT ). Therefore, the non-relativistic species passes its entropy

to rest of the thermal bath such that sa3 does not change. What is the value of g∗ and of

g∗S? We need to recover our knowledge of particle physics in Table 13. Summing up all

the contributions we have from bosons and fermions:

gbosons = 28 , gfermions = 90 , (B.17)

so that

g∗ = 28 +
7

8
· 90 = 106.75 . (B.18)

When the temperature drops below one species mass, this becomes non-relativistic and

then its gs does not contribute anymore to the above sum. Note that before neutrino

decoupling g∗ = g∗S.
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Particle mass spin gs

Quarks t, t̄ 173 GeV 1
2

2 · 2 · 3 = 12

b, b̄ 4 GeV
c, c̄ 1 GeV
s, s̄ 100 MeV

d, d̄ 5 MeV
u, ū 2 MeV

Gluons gi 0 GeV 1 8 · 2 = 16
Leptons τ± 1777 MeV 1

2
2 · 2 = 4

µ± 106 MeV
e± 511 keV
ντ , ν̄τ < 0.6 eV 1

2
2 · 1 = 2

νµ, ν̄µ < 0.6 eV
νe, ν̄e < 0.6 eV

Gauge Bosons W+ 80 GeV 1 3
W− 80 GeV
Z0 91 GeV
γ 0 2

Higgs Bosons H0 125 GeV 0 1

Table 13 – The standard model particles, with their mass, spin and degeneracies gs.

Relic abundance of DM and the WIMP possibility

On the basis of the discussion of the previous subsection, we can therefore write

Eq. (B.10) as follows:

ΩX0 =
ρX0

ρcr,0

=
10m

λρcr,0

(kBT0)
3

~3

g∗S(T0)

g∗S(m)
, (B.19)

where g∗S(m) is the number of effective degrees of freedom in entropy for a thermal energy

equal to the DM particle mass. This must be certainly larger than 1 MeV, roughly when

neutrino decoupling takes place, therefore g∗ = g∗S. Moreover,

g∗S(T0) = 2 +
7

8
· 6 ·

(

Tν

T0

)3

= 2 +
7

8
· 6 · 4

11
= 3.91 , (B.20)

and so we can rewrite Eq. (B.19) as follows:

ΩX0 =
8πGH(m)xf(kBT0)

3

3H2
0m

2c6〈σv〉
g∗S(T0)

g∗(m)
, (B.21)

where we have also made λ explicit. The Hubble parameter H(m) can be written as:

H2(m) =
8πG

3c2
g∗(m)

π2

30

(mc2)4

(~c)3
, (B.22)
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so that we have finally:

ΩX0h
2 ≈ 0.331

xf
√

g∗(m)

10−37 cm2

〈σv/c〉 ≈ 0.331
xf

√

g∗(m)

2.57 × 10−10 GeV−2

〈σv/c〉 . (B.23)

As we saw, reasonable values are xf ≈ 10 and g∗ ≈ 100. A cross-section of the order of

G2
F ∼ 10−10 GeV−2 gives the right order of magnitude of the present abundance of CDM.

This coincidence is known as WIMP miracle.1

Relic abundance of baryons

The very same result of Eq. (B.23) can be used for the annihilation of baryons:

b + b̄ ↔ γ + γ . (B.24)

Let us consider only nucleons, i.e. protons and neutrons, since their mass is the dominant

one for the baryonic energy density. The annihilation cross-section is of the order of:

〈σv/c〉 ≈ (~c)2

(mπc2)2
, (B.25)

where mπc
2 ≈ 140 MeV is the mass of the meson π, which can be thought as the mediator

of the strong interaction among nucleons. Substituting into Eq. (B.23) we get:

Ωb0h
2 ≈ 10−11 , (B.26)

i.e. a value many orders of magnitude below the observed one and that thus constitutes a

compelling argument for the necessity of baryogenesis. Focusing on electrons and positrons,

the annihilation cross section is of the order

〈σv/c〉 ≈ α2(~c)2

(mec2)2
≈ 204 GeV−2 , (B.27)

and from Eq. (B.23) we get:

Ωe0h
2 ≈ 10−12 . (B.28)

1 One can think of different cross sections and thus find CDM candidates lighter than WIMPs.
See e.g. [150]. This possibility is also called WIMPless miracle.
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