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ABSTRACT 

 

In this research, anaerobic reactors were tested for the treatment and energy 

recovery of industrial and cattle-raising waste. Four plug flow reactors operated with 

concentrations of 20% ricotta cheese whey and 80% bovine manure; 40% ricotta 

cheese whey and 60% bovine manure; 80% ricotta cheese whey and 20% bovine 

manure; and the control with 100% of bovine manure were tested in bench scale, at 

room temperature and hydraulic retention time of 30 days.  The experiment was 

conducted for 106 days in fed batches. Biogas volumes between 17 to 27 L day-1 

were produced, with an average CH4 concentration of 57 (±1.9) to 60% (±1.44) with 

energy generation potential from 0.76 to 0.90 in kWh day-1, values that demonstrate 

the potential of anaerobic co-digestion with ricotta cheese whey and bovine manure 

for biogas generation and a new alternative for renewable energy production. The 

average removals of biochemical oxygen demand and chemical oxygen demand 

were 51 (±13.15) to 78% (±12.00) and 40 (±9.44) to 69% (±20.71), of total solids and 

volatile solids of 36 (±5.14) to 54% (±11.34) and 44 (±12.53) to 69% (± 9.34), 

respectively. The pH values were always close to neutrality and alkalinity in ranges 

suitable for anaerobic co-digestion. The treatment process and recovery of these 

residues in an anaerobic reactor obtains satisfactory environmental results and can 

be considered promising. 

Keywords: Organic load. Agroindustrial waste. Bioenergy.  

  



 
 

    
 

RESUMO 

 

Nesta pesquisa reatores anaeróbios foram testados para o tratamento e 

valorização energética de resíduos industrial e da bovinocultura. Quatro reatores 

plug flow operados com concentrações de 20% de soro de ricota e 80% de dejeto 

bovino; 40% de soro de ricota e 60% de dejeto bovino; 80% de soro de ricota e 20% 

de dejeto bovino; e o controle com 100% de dejeto bovino foram testados em escala 

de bancada, temperatura ambiente, tempo de retenção hidráulico de 30 dias. O 

experimento foi conduzido por 106 dias em batelada alimentada. Foram produzidos 

volumes de biogás entre 17 a 27 L dia-1, com concentração média de CH4 de 57 

(±1,9) to 60% (±1,44) com potencial para geração de 0,76 a 0,90 de energia em kWh 

dia-1 valores que demonstram o potencial da co-digestão anaeróbia de soro de ricota 

com dejeto bovino para geração de biogás e uma nova alternativa para a produção 

de energia renovável. As remoções médias de demanda bioquímica de oxigênio e 

demanda química de oxigênio foram de 51 (±13,15) a 78% (±12,00) e 40 (±9,44) a 

69% (±20,71), de sólidos totais e sólidos voláteis de 36 (±5,14) a 54% (±11,34) e 44 

(±12,53) a 69% (±9,34), respectivamente. Valores de pH estiveram sempre próximos 

à neutralidade e a alcalinidade em faixas propícias à co-digestão anaeróbia. O 

processo de tratamento e valorização desses resíduos em reator anaeróbio obtêm 

resultados ambientais satisfatórios e pode ser considerado promissor.   

Palavras-chave: Carga orgânica. Resíduo agroindustrial. Bioenergia.  
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1 INTRODUCTION 

 

With the growing demand for renewable energy and environmental pollution 

control, technologies for biogas production through anaerobic co-digestion (AC) have 

attracted the scientific community attention (BROWN; GÜTTLER; SHILTON, 2016). 

Management and recovery of agro-industrial waste through anaerobic processes 

represent a significant opportunity to combine waste treatment and renewable energy 

production (VALTA et al., 2017). Dairy effluents represent a promising source of 

renewable energy and research is focused on energy production with better use of 

dairy waste (KASMI, 2018). 

In developed and developing countries, industrial effluents are becoming 

useful sources for biogas production (CAROTA et al., 2017). Among other effluents, 

Ricotta cheese whey (RCW) represents an industrial pollutant, derived from the 

production of ricotta, composed of 0.15 to 0.22% of proteins, 1 to 1.13% of salts, 4.8 

to 5% of lactose, estimated biological oxygen demand (BOD) of 50 g L-1 and a 

chemical oxygen demand (COD) of 88 g L-1. Although a protein concentration does 

not allow its use in processes that involve the valorization of this macromolecule, the 

lactose content can be explored in fermentation processes (RIZZOLO; 

CORTELLINO, 2017). However, AC is an appropriate strategy for the treatment of 

this waste, as it contains easily fermentable carbohydrates, or makes it a suitable 

substrate for this process (FLORES-MENDOZAA et al., 2020). 

Energy recovery from bovine manure (BM) is a reality in several countries 

(MIRANDA et al., 2016). As livestock effluent is a source of methane (CH4), which is 

a highly valued energy resource (MENDONÇA; OMETTO; OTENIO, 2017). Given the 

need to control such wastes in order to reduce their environmental impact, the 

application in AC with other organic wastes with complementary characteristics 

enhances the energetic valorization of the substrate through the biogas/biomethane 

production, besides obtaining a final effluent with potential to be used as a 

biofertilizer in agriculture (RAHEEM; HASSAN; SHAKOOR, 2016). 

AC represents one of the sustainable ways of treating waste that contains 

organic matter that is difficult to degrade and recalcitrant, increases biodegradation, 

reduces environmental impacts and constitutes an energy resource of great potential 

(CORSINO et al., 2017; XU et al., 2018). 
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In this study, the objective was to add RCW as an alternative for the 

production of biogas in the AC with BM, in different proportions, using the treatment 

system composed of four plug-flow reactors, operated on a bank scale as well as to 

analyze the performance of the AC process, measuring the biogas and CH4 rates 

and verifying the behavior and changes in the physical-chemical parameters. 
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2 MATERIALS AND METHODS 

 

The analysis were performed at the Brazilian Agricultural Research 

Corporation, Embrapa Dairy Cattle, Juiz de Fora, MG, Brazil. The physical-chemical 

and microbiological analysis were performed at the Rumen Microbiology Laboratory 

and the analysis of the biogas composition at the Chromatography Laboratory. 

Metagenomic analysis were performed in the genetics laboratory and in an outsorced 

laboratory. 

 

2.1 CHARACTERISTICS OF THE EXPERIMENT CONDUCTION SITE 

 

The experiment was conducted at the Brazilian Agricultural Research 

Corporation, Embrapa Dairy Cattle, Juiz de Fora, MG, Brazil, in geographic 

coordinates, 21° 46 '55 "S; 53° 22' 10" W. The area is classified as Cwa according to 

Köppen & Geiger, with an average temperature of 20.1 °C, a maximum of 27.9 °C 

and a minimum of 11.2 °C, with 1.504 mm annual rainfall average and atmospheric 

pressure of 0.97 atm (CLIMATE-DATE.ORG, 2019; DEGEO, 2009). 

 

2.2 SUBSTRATES AND INOCULUM 

 

The substrates for the plug flow reactor experiment were BM and RCW (Table 

1, Table 2). 
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Table 1 – Microbiological BM characterization 

 

BM 

Escherichia coli 

Pseudomonas aeruginosa 

Methanobrevibacter 

Methanosphaera 

Methanocorpusculum 

Methanosaeta 

Methanosarcina 

Source: Elaborated by the author (2020). 
Note: BM: bovine manure. 
 

Table 2 – Physicochemical characterization of substrates 

 

Parameters Unity BM RCW 

pH - 6.25(0.43) 5.88(0.11) 

Alkalinity mg L⁻¹ 2,791.00(316.34) 860.00(3.51) 

TS  62,000(6,900) 52,200(200) 

VS  54,400(3,700) 41,700(400) 

Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; TS: total solids; VS: volatile solids. 

Values in brackets indicate standard deviation. 
 

The BM consisted of raw manure semi-confined lactating Girolando mixed with 

and wastewater from free-stall floor cleaning in milk production system of the 

experimental farm of Embrapa Dairy Cattle, in Coronel Pacheco, MG, Brazil. The 

animals diet was concentrated (mixture of 60% corn grains, 36% soy grains, 3% 

mineral core and 1% urea), corn silage, pasture and mineral salt, with an adopted 

average of 3.5 kg, 20 kg, 40 kg and 150 g per day, respectively. 

The BM was collected weekly and transported to Embrapa Dairy Cattle, in the 

city of Juiz de Fora, MG, Brazil. The mixture was sieved 3.7 mm mesh to 

homogenize the TS concentration in 6% (±2%). After the preparation of the BM 

related substrate, they were stored at 8 °C for later use in the daily supply of 

reactors. The BM itself was used as inoculum for the reactor start up. 
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The RCW was obtained weekly in a dairy company in the city of Juiz de Fora, 

MG, Brazil and transported to Embrapa Dairy Cattle, after stored at 8 °C. It was 

removed from refrigeration for daily use with bovine manure mixture and, when at 

room temperature, RCW pH was corrected between 6.5 and 7.0 with 59 mL of 

calcium hydroxide (Ca(OH)2) at 4.24% for each 1 L of RCW. This concentration was 

sufficient for pH correction/increase, according to tests performed with different RCW 

initial pH values (SANTANA et al., 2019). 

 

2.3 REACTORS DESCRIPTION 

 

Each reactor model used in this experiment were constructed from PVC tubes, 

composed by a 60 L fermentation chamber with 30 L individual gasometers, which 

worked in conjunction with the plastic hose-connected reactor (Figure 1). The 

gasometers were constructed using two PVC tubes, where one outer tube was filled 

with water and the second submerged in water to allow displacement of the gas 

produced in the fermentation chamber. The reactors were painted black to maximize 

their internal heating, placed on iron sports, operated outdoors at room temperature 

and grouped by side, so that the incidence of sunlight was homogeneous for all. 

 

Figure 1 – Anaerobic reactor. (a) cylindrical anaerobic reactor. (b) details of 

gasometer 

 

 
Source: Adapted from RESENDE et al. (2016). 
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2.4 TREATMENT DESCRIPTIONS 

 

Four reactors were used for the AC essay (Table 3). The microbiological and 

physico-chemical characteristics of each mixture for station co-digestion presented 

on Table 4 and 5, respectively.  

 

Table 3 – Mixture description per reaction unit 

 

Reactor Treatment 

1 Control (100% BM) 

2 20 % RCW + 80% BM 

3 40% RCW + 60% BM 

4 80% RCW + 20% BM 

Source: Elaborated by the author (2020).  
Notes: BM: bovine manure; RCW: ricotta cheese whey. 
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Table 4 – Microbiological characteristic of the influents of each treatment e for co-

digestion    

 

20% RCW +  

80% BM 

40% RCW + 

 60% BM 

80% RCW +  

20% BM 
Control 

Escherichia coli Escherichia coli Escherichia coli Escherichia coli 

Pseudomonas 

aeruginosa 

Pseudomonas 

aeruginosa 

Pseudomonas 

aeruginosa 

Pseudomonas 

aeruginosa 

Methanobacterium Methanobacterium Methanobacterium Methanobacterium 

Methanobrevibacter Methanobrevibacter Methanobrevibacter Methanobrevibacter 

Methanocorpusculum Methanocorpusculum Methanocorpusculum Methanocorpusculum 

Methanoculleus Methanoculleus Methanoculleus Methanoculleus 

Candidatus 

Methanoregula 

Candidatus 

Methanoregula 

Candidatus 

Methanoregula 

Candidatus 

Methanoregula 

Methanolinea Methanolinea Methanolinea Methanolinea 

Methanospirillum Methanospirillum Methanospirillum Methanospirillum 

Methanosaeta Methanosaeta Methanosaeta Methanosaeta 

Methanosarcina Methanosarcina Methanosarcina Methanosarcina 

Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey. 
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Table 5 – Physico-chemical characteristic of the influents of each treatment for co-

digestion 

 

Parameters Unity 
20% RCW + 

80% BM 

40% RCW+  

60% BM 

80% RCW + 

20% BM 
Control 

pH - 6.00(0.50) 5.98(0.60) 5.85(0.53) 6.25(0.43) 

Alkalinity 

mgL-1 

2,199.00(299.00) 1,816.00(296.01) 1,501.00(318.59) 2,791.00(316.34) 

TS 58,700(6,500) 52,500(6,200) 50,600(6,500) 62,000(6,900) 

VS 48,400(2,900) 43,900(3,000) 40,500(3,600) 54,400(3,700) 

COD 92,150(9,672) 81,117(189) 59,867(6,861) 97,433(571) 

BOD5 39,756(3,779) 37,200(14003) 27,367(3,172) 43,753(9,842) 

TKN 470.00(352.04) 398.00(292.57) 382.00(382.37) 388.00(152.55) 

N-NH3 446.00(500.72) 353.00(382.63) 340.00(397.32) 339.00(289.33) 

NO3
- 32.00(20.21) 42.00(14.14) 38.00(21.21) 35.00(0.01) 

NO2
- 3.00(1.53) 4.00(0.35) 7.00(2.83) 5.00(2.47) 

Source: Elaborated by the author (2020). 
Notes: TS: total solids; VS: volatile solids; COD: chemical oxygen demand; BOD5: 

biochemical oxygen demand; TKN: total Kjeldahl nitrogen ; N-NH3 : ammoniacal 
nitrogen; NO3

-: nitrate; NO2
-: nitrite. Values in brackets indicate standard deviation. 

 

The operation of the reactor was carried out in three phases, the first being 

related to the start of the system and the other two to the operation of the unit. 

Initially, all reactors were completely filled with BM, exclusively for the 

development of the inoculum, ensuring the growth and stabilization of colonizing 

microorganisms, which corresponds to the start up of the experiment (Phase 1). After 

the adaptation of the inoculum, verified with the concentration of CH4 above 60%, the 

daily supply of 2L of the mixture and effluent outlet started (Phase 2) (MENDONÇA 

et al., 2017). After 30 days of daily supply, the reactors operated in complete co-

digestion (Phase 3). The experiment took 106 days in complete co-digestion at total 

with hydraulic retention time (HRT) of 30 days. 

The treatment units operated in the ambient temperature range, between 18 

and 26°C average of 22°C (± 2.02) and temperatures inside the reactor, between 14 

and 33°C average of 25°C (± 2.32 ), these ranges that oscillated between the 

conditions of psychic (<20°C) and mesophilic (25 to 40°C) temperatures.    



19 
 

    
 

To prepare the mixtures, the following steps were followed: the substrates 

were measured separately in a glass beaker and mixed in a plastic beaker, both with 

a volume of 2 L, according to each treatment. 

 

2.5 MICROBIOLOGICAL ANALYSIS 

 

During the complete co-digestion phase, seven samples of effluents were 

collected from each treatment, for the characterization and monitoring of Escherichia 

coli and Pseudomonas aeruginosa, representing the acidogenic phase. As well as 

samples of substrates and influents. 

To meet the objectives of the experiment, serial dilutions of samples from 10-1 

to 10-3 were performed in 0.9% saline (NaCl), aliquots of 0.1 ml (100 μL) sown in 

selective culture medium, Eosin Methylene Blue Agar (EMB) for Escherichia coli and 

MacConkey Agar for Pseudomonas aeruginosa. The plates incubated in a 

bacteriological oven for 24 hours at 37ºC (APHA, 2017) 

The quantification of microorganisms was performed from the direct count of 

Colony Forming Units (CFU) grown in the culture medium to contain between 30 and 

300 CFU (APHA, 2017). 

Biochemical tests were performed to identify Escherichia coli and 

Pseudomonas aeruginosa. The cultivated colonies were subjected to Gram stain 

analysis, catalase test, oxidase, SIM (sulfate, indole and motility) and citrate to prove 

and confirm the isolated bacteria (APHA, 2017). 

 

2.6 METAGENOMIC ANALYSIS 

 

The total of 11 samples was selected at different times, for better 

representation, prioritizing the selection of at least one sample/month of each reactor, 

using as a criterion the production of CH4 associated with the temporal distribution to 

choose the co-digestion effluent samples complete. Two samples of substrate were 

collected, four of affluent and five of effluent. 

DNA samples extracted were submit to a quality analysis through fluorescence 

quantification using Qubit® 3.0 Flurometer and QubitTM dsDNA HS Assay Kit 

(Thermo Fisher Scientific, Waltham, MA, USA). 
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For amplification of polymorphic region (V4) of the 16S rRNA gene, PCR were 

conduct in triplicate using the oligonucleotides. The reactions were carry out in a 

VeritiTM Thermal Cycler (Applied Biosystems, Foster, CA, USA). Then the 

amplification was confirm by agarose gel electrophoresis (2%). Amplification products 

were subject to purification steps using Agencourt AMPure XP beads (Beckman 

Coulter, High Wycombe, UK), according to manufacturer’s protocol.  

Subsequently, indexers were insert into common adapters required for 

generating clusters and sequencing the samples. The indexing reaction was perform 

following the protocol of Nextera XT Index Kit (Illumina, Inc., San Diego, CA, USA). 

Amplification reactions were conducted in VeritiTM Thermal Cycler (Applied 

Biosystems, Foster, CA, USA). The created libraries were submit to the purification 

steps using Agencourt AMPure XP beads (Beckman Coulter, High Wycombe, UK), to 

remove small fragments of total population of molecules and remains of primers. 

After this step, the quantification was performed by Real Time PCR using 

Kapa Library Quantification Kit Illumina GA Universal - KK4824 (Kapa Biosystems, 

Wilmington, MA, USA), according to manufacturer’s recommendations. An equimolar 

DNA pool was generate by normalizing all samples to 3nM, to perform the 

sequencing, which was conducted using Illumina MiSeq platform (Illumina, San 

Diego, CA, USA) and MiSeq Reagent - V2 Micro 300 cycles Kit (Illumina, San Diego, 

CA, USA). 

Bioinformatics analysis was performed on QIIME2 platform version 2019.7 

(BOLYEN et al., 2019). The sequences were filter by quality and grouped into 

Operational Taxonomic Units (OTUs) using 97% of identity between them. 

  

2.7 PHYSICAL-CHEMICAL ANALYSIS 

 

Sixteen samples at total were collected at the entrance (affluent) and at the 

exit (effluent) of each reactor weekly and analyzed in duplicate (results expressed 

every 15 days), obtaining eight samples/repetition per month. The sampling period 

took place from December 2018 to March 2019 (Phase 3). The pH was assessed by 

Tecnal pHmeter model Tec-3MP. Alkalinity (CaCO3) was analyzed by titration with 

1N sulfuric acid solution until the pH reached 4.3. To quantify the total solids (TS), 

the samples were incubated in an oven at 105°C, cooled in a desiccator and the dry 
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weight was quantified. For volatile solids (VS) the same samples were sent to the 

muffle furnace (575°C), cooled in a desiccator and the ash weight was quantified, 

which was subtracted from the dry weight. The determination of biochemical oxygen 

demand (BOD5) occurred by iodometry and chemical oxygen demand (COD) by the 

colorimetric method with closed reflux, with the spectrophotometer operating in the 

range of 420 nm and 600 nm. To determine ammoniacal nitrogen (N-NH3), nitrite 

(NO2
-) and nitrate (NO3

-) an optical emission spectrophotometer was used. The 

measurements were performed in accordance with the standard methods (APHA, 

2017).  

The CH4 concentrations contained in the biogas were determined by gas 

chromatography, during phases 2 and 3 of the experiment, using the Agilent 

Technologies chromatograph, model 7.820A, consisting of HP-Plot / Q columns 30m 

x 0.530 mm x 40.0 μm and HP-Molesieve 30m x 0.530mm x 25.0 μm, with hydrogen 

(H2) as the carrier gas (COLLINS; BRAGA; BONATO, 1997).  

The ambient temperatures and inside the digesters were determined by a U12 

4-External Channel Outdoor / Industrial Data Logger (Part # U12-008) together with 

the HOBOware software. The measurement was provided in degrees Celsius (°C) 

over a 12-hour time interval, with data collection of every 15 days. 

 

2.8 NORMALIZATION OF THE VOLUME OF BIOGAS 

 

The biogas measurements were carried out every day, twice a day, at the 

same time, in the morning, before the daily supply and in the afternoon, during all 

phases of the experiment. 

The volume of the measured biogas was normalized to standard conditions 

(0°C and 1,013 bar), according to the ideal gas equation of Gay-Lussac (Equation 1). 

V0 =
V1. P1   . T0

 P0   . T1
       (1) 

Where V0 was the corrected biogas volume (m³), P0 the corrected biogas 

pressure, to 1 atm, T0 the biogas corrected temperature (273K), V1 the gas volume in 

the gasometer, P1 the biogas pressure in the reading and T1 the biogas temperature 

(K) at the time of reading. 



22 
 

    
 

The gas temperature inside the gasometer was monitored in °C by a long-

stemmed digital thermometer HI 93510N (HANNA). 

 

2.9 THEORETICAL POTENTIAL FOR ENERGY PRODUCTION 

 

The energy production potential was calculated based on the energy content 

of CH4 using 0.222 kWh mol-1CH4 factor (PFLUGER et al., 2020).  

The number of moles of CH4 was calculated according to its concentration in 

the biogas (% p/v) and based on the that 1 mole of CH4 contains a molar mass of 16 

g. 
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3 RESULTS AND DISCUSSION 

 

The experiment was characterized by monitoring physical-chemical and 

microbiological parameters of biomass and effluents to control the process and 

establish its efficiency. 

 

3.1 BIOMASS  

 

The composition of different biomasses is one of the parameters used to 

determine the suitability of a substrate for the production of biogas.  

The performance of the AC depends on the functions and interactions of the 

microorganisms. However, a diversity of these microorganisms depends on the type 

of organic matter applied to the reactor (FLORES-MENDOZAA et al., 2020). 

The relationship between biomass and microorganisms is a factor that 

depends on the type and composition of the substrate and inoculum. The inoculum 

provides microorganisms capable of digesting organic matter, accelerating the initial 

biodegradation process. The characteristics of the inoculum influence the existence 

and initial activity of microorganisms and the different adaptations of the substrates 

(HOLLIGER et al., 2016). The increase in the inoculum concentration increases the 

amount of methanogenic bacteria in the reactor, limiting the accumulation of volatile 

fatty acids (VFA) (SHI et al., 2014).  

In the present study acidogenic bacteria and methanogenic archaeas were 

identified in the substrates (Table 1). 

Acidogenic bacteria were important in the co-digestion process, as they 

helped to convert organic matter into energy in the form of CH4, by converting the 

substrate into acetate, the main precursor of CH4 in the metabolic pathway (MANYI-

LOH et al., 2019). As well as the methanogenic acetoclastic and hydrogenotrophic 

archaeas, for converting acetate to CH4, and H2 and CO2 to CH4, respectively (JI; 

LIU; CONRAD, 2018). These bacteria are important in anaerobic reactors, at about 

70% of the CH4 produced in these systems is the result of acetate degradation 

(DARWIN; CORD-RUWISCH, 2019).   
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The increase in methanogenic bacteria, such as alkalinity, contributes to pH 

stabilization, reduces microbial inhibitions and improves CH4 production. However, 

acidification is one of the challenges in the process (SHI et al., 2014). 

The acidity and low alkalinity of the RCW, were on average 5.88 (± 0.11) and 

860 (±3.51) mg CaCO3 L⁻¹, respectively, would make anaerobic digestion harder 

(Table 2) (BROWN; GÜTTLER; SHILTON, 2016). Alkalization to avoid acidification 

and impracticability of the process is essential (DIAMANTIS et al., 2014). 

In this research, the TS values of the BM determined as ideal for the stability 

of the 30 day HRT process, were on average 62,000 (±6,900) mg L⁻¹, lower than that 

determined in reactors, with fasting at 80,000 mg L⁻¹ TS and the same HRT used in 

the present study. While the VS values were 54400 (± 3700) mg L⁻¹, ranging from 

49,200 to 65,100 mg L⁻¹ the records under study and measuring as physical-

chemical properties of bovine manure, were lower, varying between 61,600 to 69,500 

mg L⁻¹ (WANG et al., 2019).  

The composition of the RCW depends on factors such as type of milk and 

conditions of production and generation of industrial waste. Regarding their 

characteristics, the TS and VS were from 52,200 (±200) and 41,700 (±400), 

respectively. 

 

3.2 MICROBIAL COMMUNITY 

 

The diversity of the microbial community in the AC process in the different 

treatments showed less presence of Methanosphaera (Figure 2).  
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This methanogenic archaea uses H2 to reduce methanol to CH4 through the 

methylotrophic pathway and its reduced population can lead to a decrease in 

hydrogen consumption, inhibiting VFA conversion (LV et al., 2019). However, 

Methanosarcina is generalist, it can form CH4 by three metabolic pathways, 

acetoclastic, hydrogenotrophic and methylotrophic, from H2, CO2, methanol, 

methylamine and acetate (ROCHELEAU et al., 1999). This bacterium remained 

present in all reactors during all days of operation, which cannot cause an increase in 

the volume of VFA, does not affect the pH of the medium and microbial inhibition 

(ZHANG et al., 2014). 

Studies carried out on the composition of the methanogenic community in BM 

have identified very low amounts of Methanosphaera, close to what was verified in 

the present research (GUO et al., 2020; JIN et al., 2017; LIU et al., 2018). Indicating 

that microbial diversity can be attributed to several factors, such as animal breeds, 

diet sources and composition (DONG et al., 2019).  

Among the other eight methanogenic bacteria identified, six produced CH4 

from reduced CO2 and two from reduced acetic acid. However, the production of CH4 

depended on the production of acetic acid and H2 and these on the conversion of 

organic compounds to VFA. These microorganisms depend on the substrate 

provided by the acetogens, which are dependent on the acidogens, which 

demonstrates that the metabolic routes and products generated are dependent on 

the balance between the metabolites in the process (KLEEREBEZEM; 

LOOSDRECHT, 2010). 

In this research, the presence of acidogenic and methanogenic bacteria 

throughout the experiment characterized the smooth functioning of the process, 

through the dynamic balance between microbial groups, which favored the 

production of biogas, which may be related to the addition of the inoculum at the 

beginning of the process, as recorded by Mukhuba et al. (2020).  

 

3.3 pH AND ALKALINITY 

 

The pH influences the growth and performance of bacteria present in the AC, 

which can vary in pH between 4 and 8.5 (SHI et al., 2014). In this research, the pH 

remained between 6.9 and 7.3, close to neutrality, or demonstrated that there were 
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no accumulation of VFA, as they were converted into CO2 and CH4, preventing the 

decrease in pH and the instability of the process, or the which favored the 

decomposition of organic matter (Figure 3) (WAINAINA et al., 2019; YUAN et al., 

2019).  

 

Figure 3 – pH values of effluents from each treatment in the 

anaerobic co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day 

of  operation phase 3.  
 

However, changes in pH and presence of acidogenic bacteria in all reactors 

during all days of operation may indicate that there were no major changes in the 

metabolic pathway, not affecting the ability to produce acids from the fermentation of 

carbohydrates and the number of microorganisms present in reactors (DARWIN; 

CORD-RUWISCH, 2019). Although the ideal pH for acidogenesis was between 5.5 to 

6.5 and the pH change during the fermentation process could vary the rate of 

microbial growth (GRESES; TOMÁS-PEJÓ; GÓNZALEZ-FERNÁNDEZ, 2020; SHI et 

al., 2014).  

The pH values between 6.8 to 7.2 favored the growth of methanogenic 

bacteria, without interrupting the production of CH4. The high methanogenic 
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population and high alkalinity can contribute to stabilize the pH by improving CH4 

production (PANIZIO et al., 2020; ZHANG et al., 2014). 

In this study the alkalinity maintained from 2,050 to 5,070 mg L-1 the alkalinity 

supplementation may have been due to the solubilization of the CO2 formed due to 

the degradation of organic matter, which due to the alkaline pH, the chemical balance 

of CO2 changed to bicarbonate (dissociation of carbon dioxide in the bicarbonate ion) 

(Figure 4) (CHEAH et al., 2019; PARRALEJO et al., 2019) . As consequence, greater 

alkalinity returns to the system (KUNZ; MUKHTAR, 2016).  

 

Figure 4 – Alkalinity values of effluents from each treatment in the 

anaerobic co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day 

of  operation phase 3. 
  

Alkalinity is a control parameter to operate reactors under ideal pH conditions 

for the production of VFA, however, alkalinity above 2500 mg L-1 and little pH 

variation favored the occurrence of a relevant buffer effect in anaerobic reactors 

(CHEAH et al., 2019; PARRALEJO et al., 2019). In addition, it was able to avoid high 

pH, which indicated the production of alkalizing substances that neutralized the acids 
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produced, and maintained the appropriate levels for system performance (CHEAH et 

al., 2019). 

 

3.4 TOTAL AND VOLATILE SOLIDS 

 

The TS values of the affluents were on average 58,700 (±6,500), 52,500 

(±6,200), 50,600 (±6,500) and 62,000 (± 6,900) mg L-1 (Table 5) and of the effluents 

from 14,300 to 46,400 mg L-1, in reactors operated with 20, 40 e 80% of RCW and 

control, respectively (Figure 5). 

 

Figure 5 – Total solids values of effluents from each treatment in the 

anaerobic co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day 

of  operation phase 3.  
 

For mesophilic operation of plug flow reactors, a range of TS between 10 and 

14% is recommended (WILKIE, 2005). On the other hand, when reactors are 

operated at room temperature, lower percentages of TS are required, due to the 

difficult degradation of these compounds, which can lead to a decrease in removal 

efficiency (MENDONÇA; OMETTO; OTENIO, 2017). 
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The VS changed due to changes in the concentrations of the treatments, 

mainly in those with 80% RCW, resulting in greater variability in the reactors output 

load (Figure 6). 

 

Figure 6 – Volatile solids values of effluents from each treatment in the 

anaerobic co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day 

of operation phase 3.  
 

The removal average day-1 of TS and VS were 27 to 72% and 26 to 83%, 

respectively (Table 6). 
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Table 6 – Daily removal: total and volatile solids from each treatment in the 

anaerobic co-digestion process 

(continue) 

Removal TS (%) 

Days 
20% RCW + 

80% BM 

40% RCW + 

60% BM 

80% RCW + 

20% BM 
Control 

1 35.00 29.00 57.00 37.00 

16 34.00 46.00 42.00 30.00 

31 39.00 47.00 62.00 42.00 

46 44.00 47.00 63.00 34.00 

61 27.00 58.00 72.00 41.00 

76 38.00 37.00 54.00 38.00 

91 39.00 32.00 44.00 43.00 

106 33.00 33.00 40.00 42.00 

Av 36.00 37.00 54.00 38.00 

Max 44.00 58.00 72.00 43.00 

Min 27.00 12.00 40.00 30.00 

SD ±5.14 ±10.05 ±11.34 ±4.48 

Removal VS (%) 

Days 
20% RCW + 

80% BM 

40% RCW + 

60% BM 

80% RCW + 

20% BM 
Control 

1 40.00 38.00 62.00 37.00 

16 39.00 53.00 55.00 40.00 

31 39.00 31.00 72.00 45.00 

46 38.00 55.00 66.00 38.00 

61 26.00 55.00 73.00 42.00 

76 53.00 45.00 83.00 67.00 

91 55.00 46.00 65.00 59.00 

106 66.00 58.00 79.00 56.00 
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Table 6 – Daily removal: total and volatile solids from each treatment in the 

anaerobic co-digestion process 

(conclusion) 
 

Removal VS (%) 

Days 
20% RCW + 

80% BM 

40% RCW + 

60% BM 

80% RCW + 

20% BM 
Control 

Av 44.00 47.00 69.00 48.00 

Max 66.00 58.00 83.00 67.00 

Min 26.00 31.00 55.00 37.00 

SD ±12.53 ±9.38.00 ±9.34 ±11.07 

Source: Elaborated by the author (2020). 
Notes: Av: average; SD: standard deviation of 106 days in operation; BM: bovine manure; 

RCW: ricotta cheese whey; Day 1: first day of  operation phase 3.  

 

The increase in the organic load changed the capacity of the reactor to 

promote degradation, considering that the VS are made up of organic compounds 

with different rates of degradation and that the removal solids is associated with the 

generation capacity and quality of biogas generated by microorganisms. 

In the present research, due to the greater biodegradability of the RCW, a 

removal of the VS increased with the addition of its proportion in the mixtures, with a 

greater removal in the reactor with 80% of the RCW. In Spain, a study carried out in 

Cantabria, with AC of milk and bovine milk in the CSTR reactor operated at 35°C, 

obtained 56.2 and 69.9% of VS, for proportions of 15 and 85% of whey, respectively, 

at a 80-day HRT (RICO; MUÑOZ; RICO, 2015). In Tunis, Tunisia, a CSTR reactor 

operated in batch at 35°C in 20 day HRT with AC of whey and bovine milk at different 

selected levels quickly recovered SV (88.6%) without treatment with 80% effluent 

dairy and 20% bovine waste (JIHEN et al., 2015).  

The values of TS and VS removal verified in the control reactor varied from 30 

to 33% and 37 to 67%, respectively, with higher removal efficiencies for TS and VS in 

the treatments with 80% RCW, at pH 7.14 and 6.99, with CH4 production of 65 and 

59%, demonstrating that the co-digestion increased the removal of solids, promoting 

greater degradation of organic matter. Sequential up-flow anaerobic sludge blanket 

(UASB) reactors of 20 and 40 L operated with bovine manure in the proportions of 

500 and 800 g of manure to 1 L of water, at room temperature, between 20 and 
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30°C, with HRTs of 7.5 and 12 days, respectively, obtained TS and VS removal 

greater than 71% (MONTOYA et al., 2017). Plug flow reactors, due to their 

hydrodynamic characteristics, tend to have less TS and VS removal than UASB.  

 

3.5 BOD5 AND COD REMOVAL 

 

The organic loads applied to the reactor, affluent BOD5 and COD 

concentrations are shown in Table 5. Wide variations in BOD5 and COD 

concentration were observed, with values average between 27,367 (±3,172.37) to 

43,753 (±9,842.90) and 59,867 (±6,861.91) to 97,433 (±5,711.68) mg L-1, 

respectively. This is because, in the collections carried out during the experiment, 

operational difficulties occurred, such as different batches of milk, heterogeneous 

generation of residues (manure and urine), type and form of feed provided for 

livestock and washing time of the corral by the operators. Such operating conditions 

reflected directly on the values of the applied organic loads. 

In the present work, the  BOD5 and COD of the effluents varied from 1,275 to 

31,550 mg L-1 and 9,125 to 71,850 mg L-1, maintaining the stability of the process 

(Figure 7,  Figure 8). 

 



34 
 

    
 

Figure 7 – Biological oxygen demand of effluents from each 

treatment in the anaerobic co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day 

of  operation phase 3.  
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Figure 8 – Chemical oxygen demand of effluents from each treatment 

in the anaerobic co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day 

of  operation phase 3.  
 

The RCW contain a high concentration of COD and are easy to digest, 

however the excess of these residues without BM can lead to process failure 

(BROWN; GÜTTLER; SHILTON, 2016). What did not occur in this research when 

operating a reactor with 80% RCW and 20% BM, due to the BM ability to supply 

nutrients that maintains the balanced buffering capacity and the stable digestion 

process. 

The reactors removed 22 to 88% of COD and 30 to 95% of BOD5 (Table 7).  
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Table 7 – Daily removal: Chemical oxygen demand and Biological oxygen demand 

from each treatment in the anaerobic co-digestion process 

(continue) 
 

Removal COD (%) 

Days 
20% RCW + 

80% BM 

40% RCW + 

60% BM 

80% RCW + 

20% BM 
Control 

1 22.00 36.00 32.00 28.00 

16 33.00 38.00 47.00 32.00 

31 43.00 39.00 63.00 35.00 

46 43.00 65.00 88.00 32.00 

61 48.00 42.00 84.00 47.00 

76 49.00 42.00 85.00 48.00 

91 50.00 42.00 85.00 49.00 

106 64.00 61.00 70.00 51.00 

Av 44.00 46.00 69.00 40.00 

Max 64.00 61.00 88.00 51.00 

Min 22.00 36.00 32.00 28.00 

SD ±12.51 ±11.21 ±20.71 ±9.44 

Removal BOD5 (%) 

Days 
20% RCW +  

80% BM 

40% RCW + 

 60% BM 

80% RCW +  

20% BM 
Control 

1 30.00 34.00 78.00 28.00 

16 38.00 33.00 70.00 34.00 

31 45.00 32.00 61.00 40.00 

46 70.00 85.00 95.00 70.00 

61 49.00 38.00 84.00 45.00 

76 53.00 62.00 86.00 51.00 

91 56.00 86.00 88.00 57.00 

106 64.00 56.00 65.00 52.00 

 

  



37 
 

    
 

Table 7 – Daily removal: Chemical oxygen demand and Biological oxygen 

demand from each treatment in the anaerobic co-digestion process 

(conclusion) 
 
 

Removal BOD5 (%) 

Days 
20% RCW +  

80% BM 

40% RCW + 

 60% BM 

80% RCW +  

20% BM 
Control 

Av 51.00 53.00 78.00 47.00 

Max 70.00 86.00 95.00 70.00 

Min 30.00 32.00 61.00 28.00 

SD ±13.15 ±22.72 ±12.00 ±13.33 

Source: Elaborated by the author (2020). 
Notes: Av: average; SD: standard deviation of 106 days in operation; BM: bovine 

manure; RCW: ricotta cheese whey; Day 1: first day of operation phase 3.  
 

The greatest removal efficiency was in the reactor with 80% RCW, 

demonstrating that the storage of the RCW at room temperature did not affect the 

performance of the AC. As in a research that operated a 10L completely agitated 

reactor coupled to a laboratory-scale cross-flow tubular ultrafiltration membrane 

module with whey, with supplemented alkalinity, in mesophilic conditions for 169 

days and achieved removal above 90% (DERELI et al., 2019). 

In the present research the increase in applied organic loads provided greater 

efficiency in the removal of COD, without prejudice to methanogenesis, showing that 

the stability of the microbial community was followed by the stability of the reactors 

performance (WIRTH; REZA; MUMME, 2015). 

The reactor control showed less removal of COD, with a minimum removal of 

28% and a maximum of 51%. The AC of BM with recalcitrant residues with 

complementary characteristics increases the removal of COD, as already reported in 

another study when operating a solar bioreactor from palm mill effluent co-digested 

with BM at 35 ° C for 24 days that obtained less removal of COD in the reactor with 

100% BM, which was 15% (KHALID et al., 2019). 

According to the legal norms for the disposal of agroindustrial effluents in 

watercourses established by the local legislation of Minas Gerais, COPAM/CERH-

MG Joint Normative n° 1, of May 5, 2008 the treatment efficiency of at least 75% in 

the removal of BOD, the final effluent could be discarded in watercourses (COPAM, 
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2008). In the present study, treatment with 80% RCW showed an average of 78% (± 

12) BOD5 removal, on the other hand, the removals verified throughout the 

experiment at the exit of the other reactors can still be harmful to watercourses with 

less flow. Very high rates of BOD5 removal (78%) were also achieved when operating 

pilot scale anaerobic digesters with BM and cheese whey at 35°C for 56 days 

(COMINO; ROSSO; RIGGIO, 2009). If this process is adopted in full scale, post 

treatment will always be recommended to complement the removal of COD and 

BOD5. 

 

3.6 BIOGAS PRODUCTION AND ENERGY RECOVERY 

 

The biogas produced during AC had a maximum CH4 value of 62% and a 

minimum of 54% (Figure 9).  

 

Figure 9 – Methane production from each treatment during the 

phases of the experimente 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Phase 2: 

adaptation of the inoculum; Phase 3: anaerobic co-digestion; 
Day1: first day of phase 2 of operation.  
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According to what is described in literature, anaerobic reactors operated with 

BM, the concentration of CH4 can vary from 55 to 65% (TANJIL et al., 2019). In the 

present work, the CH4 yield was associated with the high organic load and 

biodegradability of RCW, which is a potential co-substrate for the generation of 

biogas and CH4 (RICO; MUÑOZ; RICO, 2015). The AC with biodegradable 

substrates accelerates the production of microbial enzymes, which assist in the 

degradation of the recalcitrant residue, enabling the CH4 production (VIVEKANAND 

et al., 2018).  

Average yields in CH4 production volume from 1.96 to 2.44 m³ month-1 were 

recorded, presenting lower standard deviation of (±0.45) (Table 8). 

 

Table 8 – Volumetric methane production (m³. month-¹) from each treatment in the 

anaerobic co-digestion process 

 

Days 
20% RCW + 

80% BM 

40% RCW + 

60% BM 

80% RCW + 

20% BM 
Control 

1 1.30 1.63 2.59 1.34 

30 2.48 1.78 2.16 1.73 

60 2.60 2.49 3.02 2.01 

90 3.27 2.39 2.69 2.62 

106 0.65 1.53 1.75 2.32 

Av 2.06 1.96 2.44 2.00 

Max 3.27 2.49 3.02 2.62 

Min 0.65 1.53 1.75 1.34 

SD 1.06 0.45 0.50 0.50 

Source: Elaborated by the author (2020). 
Notes: Av: average; SD: standard deviation of 106 days in operation; BM: bovine manure; 

RCW: ricotta cheese whey; Day 1: first day of operation phase 3.  
 

Lower CH4 volumetric production values were recorded on the last day of the 

AC process. The verified reduction can be useful in the physiological stress of 

biomass due to the low availability of energy contained in the substrate 

(MENDONÇA; OMETTO; OTENIO, 2017). Developing RCW biodegradability with the 
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values of volumetric production of CH4 in the reactor of the present research can be 

considered promising.  

The volumetric production of biogas in the present study varied between 17 

and 27 L day-1 (Figure 10).  

 

Figure 10 – Biogas production from each treatment during the phases of the 

experiment 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Phase 1: start up of the  

experiment  Phase 2: adaptation of the inoculum; Phase 3: anaerobic co-
digestion. 

 

The difference in the biogas production of the samples may be due to the 

different proportions of feed applied to the reactor. The increasement in the applied 

organic load results in an increasement in the production of biogas (MONTES et al., 

2019). Dairy effluents used as a co-substrate in AC system improve the production of 

biogas due to positive synergisms established in the digestion process (BROWN; 

GÜTTLER; SHILTON, 2016). Substrates rich in carbohydrates accelerate the 

process of degradation by hydrolysis and methanogenic bacteria cannot degrade 

fatty acids to the same extent that they are formed, with the accumulation of these 

acids (KAINTHOLA; KALAMDHAD; GOUD, 2019). Co-digestion with other substrates 

that contain recalcitrant compounds increases the production of biogas by slowing 
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down the reaction speed in the initial stages of the process (BROWN; GÜTTLER; 

SHILTON, 2016). A research conducted to investigate the production of biogas by 

co-digesting bovine manure with acid whey obtained a yield between 0.33 and 0.49 

m³ kg -1 day-1  (VIVEKANAND et al., 2018). 

The reactors produced 0.45 L of biogas per liter of reactor (Figure 11). 

 

Figure 11 – Biogas per liter of reactor production from each 

treatment in the anaerobic co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day of  

operation  phase 3.  
 

In China, a plug flow reactor produced 1.08 L of biogas per liter of reactor 

(70% CH4) at an HRT of 18 days and a temperature close to 28°C (DONG; ZHANG; 

DIAO, 2019). This reactor received loads of 159,050 mg L-1 COD, 1.5 to 3.0 times 

higher than those applied in the present work, which reflected in higher biogas 

production and CH4 concentration. 

Regarding the potential for energy generation 1 m³ of biogas would have the 

potential to generate 6.4 kWh (NASCIMENTO et al., 2017). In this research, we 

estimated that the average of CH4 contents measured throughout the survey would 

enable an energy generation of 0.76 to 0.9 kWh day− 1 (Table 9). 
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Table 9 – Estimation of energy production potential (kWh.day −1) 

 

Days 
20% RCW + 

80% BM 

40% RCW + 

60% BM 

80% RCW + 

20% BM 
Control 

1 0.86 0.80 0.79 0.78 

16 0.84 0.82 0.85 0.79 

31 0.83 0.81 0.84 0.82 

46 0.82 0.81 0.85 0.83 

61 0.84 0.83 0.90 0.86 

76 0.82 0.76 0.82 0.80 

91 0.82 0.78 0.80 0.81 

106 0.79 0.77 0.76 0.79 

Av 0.83 0.80 0.83 0.81 

Max 0.86 0.83 0.90 0.86 

Min 0.79 0.76 0.76 0.78 

SD 0.02 0.03 0.04 0.03 

Source: Elaborated by the author (2020). 
Notes: Av: average; SD: standard deviation of 106 days in operation; BM: bovine manure; 

RCW: ricotta cheese whey; Day 1: first day of operation phase 3. 
 

The variation in electricity generated was attributed to the oscillation of the 

application rate of organic load regarding the number of animals variation confined in 

the respective periods and the milk quality used in the manufacture of ricotta cheese, 

from which the RCW is derived. 

This research shows promising results in AC of RCW with BM, as well as its 

potential for biogas generation and a new alternative for renewable energy 

generation (Table 10). 
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Table 10 – Accumulated production of reactors during 106 days of anaerobic co-

digestion 

 

Production Unity 
20% RCW + 

80% BM 

40% RCW + 

60% BM 

80% RCW + 

20% BM 
Control 

Biogas 

volume 
L 175.00 200.00 164.00 177.00 

Recovered 

energy 
kWh 6.62 6.38 6.60 6.47 

Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey. 
 

3.7 PROPORTIONS OF NITROGEN FRACTIONS 

 

The variations in the concentration of N-NH3 in the influents and effluents were 

128 to 1024 mg L-1 and 128 to 572 mg L-1 (Figure 12).  

 

Figure 12 – Ammoniacal nitrogen of effluents from each treatment 

in the anaerobic co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day of  

operation  phase 3.  
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The concentrations of N-NH3 increased during anaerobic digestion, indicating 

that the ammonification process degraded amino acids and proteins. This increase is 

intensified in corral washing waters due to the presence of relevant concentrations of 

organic matter (MENDONÇA; OMETTO; OTENIO, 2017). Although there was 

nitrogen concentration increase, this did not cause toxicity to microorganisms. In 

anaerobic reactors due to nitrogen concentration relevance in BM, ammonia tends to 

accumulate, resulting microbial activity inhibition in the process (BERTIN et al., 

2013). Over 150 mg L-1, some authors consider the effect of N-NH3 to be harmful to 

anaerobic systems, however, in the present study, the reactors operated 

satisfactorily even with values 1.4 to 3.8 times higher.  

At lower concentrations, ammonia can be beneficial to CH4 production, but 

toxic at higher doses, in the dissociated form found in alkaline pH (ANGELIDAKI; 

ELLEGAARD, 2003). In our results, the biogas productivity and CH4 yield indicated 

that the process worked at high concentrations of ammonia. In reactors operated at 

room temperature methanogenic bacteria are more resistant to a high ammonia load, 

due to the lower concentration of free ammonia (WANG; ZHANG; ANGELIDAKI, 

2016). 

The NO2
- was detected in low concentrations at the outlet of the reactors 

between 2 to 8 mg L-1, with no inhibition of NO2
- oxidizing bacteria, due to the 

accumulation of free nitrous acid (Figure 13).  
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Figure 13 – Nitrite of effluents from each treatment in the anaerobic 

co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day of  

operation  phase 3.  
 

As NO2
- is an intermediate and unstable compound, generally the 

concentrations found in the effluents are small (SANTAELLA et al., 2009). In low 

concentrations, NO2
- can be an intermediate compound in the reduction of nitrate 

(SEPEHRI; SARRAFZADEH, 2019). 

At the end of the co-digestion process, the NO3
- concentration was from 20 to 

60 mg L-1 (Figure 14). 
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Figure 14 – Nitrate of effluents from each treatment in the anaerobic 

co-digestion process 

 

 
Source: Elaborated by the author (2020). 
Notes: BM: bovine manure; RCW: ricotta cheese whey; Day 1: first day of  

operation  phase 3.  
 

The NO3
- concentration between 20 and 50 mg L-1 are permissible for 

irrigation without causing potential impacts to the soil (NOUKEU et al., 2016). In the 

present study, the nitrate concentration exceeded the one recommended by the 

author, by a 10 mg L-1 of only. 
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4 CONCLUSION 

 

The reactors reached CH4 volumetric production from 0.65 to 3.27 m³ month-1, 

with biogas production between 24 to 27 L day-1, with an average from 57 (±1.9) to 

60% (±1.44) of CH4, which provided generation of energy from 0.80 to 0.83 kWh.day-

1. The addition of RCW did not decrease the energy production, however the AC with 

RCW and BM were viable for biogas production and effective in the treatment of this 

wastes. The AC between these residues can solve the environmental problems faced 

by dairy products and increase energy production via AB. 

The digestion of organic matter and volatile solids occurred without the 

accumulation of volatile fatty acids or pH and alkalinity misalignments in the reactor. 

The correction of the RCW pH provided stability of the methanogenic process, 

even in periods of lower temperature. 

The total average daily efficiencies verified in the removal of BOD5 and COD 

were from 47 to 78% and from 40 to 69%, of ST and SV from 36 to 54% and 44 to 

69%. 

The use of biomass from BM and RCW to produce biogas diversifies the 

energy matrix with renewable energy, supporting sustainable development. 
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